Metamath Proof Explorer


Theorem mndpsuppss

Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypothesis mndpsuppss.r R=BaseM
Assertion mndpsuppss MMndVXARVBRVA+MfBsupp0Msupp0MAsupp0MB

Proof

Step Hyp Ref Expression
1 mndpsuppss.r R=BaseM
2 ioran ¬Ax0MBx0M¬Ax0M¬Bx0M
3 nne ¬Ax0MAx=0M
4 nne ¬Bx0MBx=0M
5 3 4 anbi12i ¬Ax0M¬Bx0MAx=0MBx=0M
6 2 5 bitri ¬Ax0MBx0MAx=0MBx=0M
7 elmapfn ARVAFnV
8 7 ad2antrl MMndVXARVBRVAFnV
9 8 adantr MMndVXARVBRVAx=0MBx=0MAFnV
10 elmapfn BRVBFnV
11 10 ad2antll MMndVXARVBRVBFnV
12 11 adantr MMndVXARVBRVAx=0MBx=0MBFnV
13 simplr MMndVXARVBRVVX
14 13 adantr MMndVXARVBRVAx=0MBx=0MVX
15 inidm VV=V
16 simplrl MMndVXARVBRVAx=0MBx=0MxVAx=0M
17 simplrr MMndVXARVBRVAx=0MBx=0MxVBx=0M
18 9 12 14 14 15 16 17 ofval MMndVXARVBRVAx=0MBx=0MxVA+MfBx=0M+M0M
19 18 an32s MMndVXARVBRVxVAx=0MBx=0MA+MfBx=0M+M0M
20 eqid BaseM=BaseM
21 eqid 0M=0M
22 20 21 mndidcl MMnd0MBaseM
23 22 ancli MMndMMnd0MBaseM
24 23 ad4antr MMndVXARVBRVxVAx=0MBx=0MMMnd0MBaseM
25 eqid +M=+M
26 20 25 21 mndlid MMnd0MBaseM0M+M0M=0M
27 24 26 syl MMndVXARVBRVxVAx=0MBx=0M0M+M0M=0M
28 19 27 eqtrd MMndVXARVBRVxVAx=0MBx=0MA+MfBx=0M
29 nne ¬A+MfBx0MA+MfBx=0M
30 28 29 sylibr MMndVXARVBRVxVAx=0MBx=0M¬A+MfBx0M
31 30 ex MMndVXARVBRVxVAx=0MBx=0M¬A+MfBx0M
32 6 31 biimtrid MMndVXARVBRVxV¬Ax0MBx0M¬A+MfBx0M
33 32 con4d MMndVXARVBRVxVA+MfBx0MAx0MBx0M
34 33 ss2rabdv MMndVXARVBRVxV|A+MfBx0MxV|Ax0MBx0M
35 8 11 13 13 offun MMndVXARVBRVFunA+MfB
36 ovexd MMndVXARVBRVA+MfBV
37 fvexd MMndVXARVBRV0MV
38 suppval1 FunA+MfBA+MfBV0MVA+MfBsupp0M=xdomA+MfB|A+MfBx0M
39 35 36 37 38 syl3anc MMndVXARVBRVA+MfBsupp0M=xdomA+MfB|A+MfBx0M
40 13 8 11 offvalfv MMndVXARVBRVA+MfB=vVAv+MBv
41 40 dmeqd MMndVXARVBRVdomA+MfB=domvVAv+MBv
42 ovex Av+MBvV
43 eqid vVAv+MBv=vVAv+MBv
44 42 43 dmmpti domvVAv+MBv=V
45 41 44 eqtrdi MMndVXARVBRVdomA+MfB=V
46 45 rabeqdv MMndVXARVBRVxdomA+MfB|A+MfBx0M=xV|A+MfBx0M
47 39 46 eqtrd MMndVXARVBRVA+MfBsupp0M=xV|A+MfBx0M
48 elmapfun ARVFunA
49 id ARVARV
50 fvexd ARV0MV
51 suppval1 FunAARV0MVAsupp0M=xdomA|Ax0M
52 48 49 50 51 syl3anc ARVAsupp0M=xdomA|Ax0M
53 elmapi ARVA:VR
54 fdm A:VRdomA=V
55 rabeq domA=VxdomA|Ax0M=xV|Ax0M
56 53 54 55 3syl ARVxdomA|Ax0M=xV|Ax0M
57 52 56 eqtrd ARVAsupp0M=xV|Ax0M
58 57 ad2antrl MMndVXARVBRVAsupp0M=xV|Ax0M
59 elmapfun BRVFunB
60 59 ad2antll MMndVXARVBRVFunB
61 simprr MMndVXARVBRVBRV
62 suppval1 FunBBRV0MVBsupp0M=xdomB|Bx0M
63 60 61 37 62 syl3anc MMndVXARVBRVBsupp0M=xdomB|Bx0M
64 elmapi BRVB:VR
65 64 fdmd BRVdomB=V
66 65 ad2antll MMndVXARVBRVdomB=V
67 66 rabeqdv MMndVXARVBRVxdomB|Bx0M=xV|Bx0M
68 63 67 eqtrd MMndVXARVBRVBsupp0M=xV|Bx0M
69 58 68 uneq12d MMndVXARVBRVsupp0MAsupp0MB=xV|Ax0MxV|Bx0M
70 unrab xV|Ax0MxV|Bx0M=xV|Ax0MBx0M
71 69 70 eqtrdi MMndVXARVBRVsupp0MAsupp0MB=xV|Ax0MBx0M
72 34 47 71 3sstr4d MMndVXARVBRVA+MfBsupp0Msupp0MAsupp0MB