Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mndpsuppss.r | |
|
Assertion | mndpsuppss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndpsuppss.r | |
|
2 | ioran | |
|
3 | nne | |
|
4 | nne | |
|
5 | 3 4 | anbi12i | |
6 | 2 5 | bitri | |
7 | elmapfn | |
|
8 | 7 | ad2antrl | |
9 | 8 | adantr | |
10 | elmapfn | |
|
11 | 10 | ad2antll | |
12 | 11 | adantr | |
13 | simplr | |
|
14 | 13 | adantr | |
15 | inidm | |
|
16 | simplrl | |
|
17 | simplrr | |
|
18 | 9 12 14 14 15 16 17 | ofval | |
19 | 18 | an32s | |
20 | eqid | |
|
21 | eqid | |
|
22 | 20 21 | mndidcl | |
23 | 22 | ancli | |
24 | 23 | ad4antr | |
25 | eqid | |
|
26 | 20 25 21 | mndlid | |
27 | 24 26 | syl | |
28 | 19 27 | eqtrd | |
29 | nne | |
|
30 | 28 29 | sylibr | |
31 | 30 | ex | |
32 | 6 31 | biimtrid | |
33 | 32 | con4d | |
34 | 33 | ss2rabdv | |
35 | 8 11 13 13 | offun | |
36 | ovexd | |
|
37 | fvexd | |
|
38 | suppval1 | |
|
39 | 35 36 37 38 | syl3anc | |
40 | 13 8 11 | offvalfv | |
41 | 40 | dmeqd | |
42 | ovex | |
|
43 | eqid | |
|
44 | 42 43 | dmmpti | |
45 | 41 44 | eqtrdi | |
46 | 45 | rabeqdv | |
47 | 39 46 | eqtrd | |
48 | elmapfun | |
|
49 | id | |
|
50 | fvexd | |
|
51 | suppval1 | |
|
52 | 48 49 50 51 | syl3anc | |
53 | elmapi | |
|
54 | fdm | |
|
55 | rabeq | |
|
56 | 53 54 55 | 3syl | |
57 | 52 56 | eqtrd | |
58 | 57 | ad2antrl | |
59 | elmapfun | |
|
60 | 59 | ad2antll | |
61 | simprr | |
|
62 | suppval1 | |
|
63 | 60 61 37 62 | syl3anc | |
64 | elmapi | |
|
65 | 64 | fdmd | |
66 | 65 | ad2antll | |
67 | 66 | rabeqdv | |
68 | 63 67 | eqtrd | |
69 | 58 68 | uneq12d | |
70 | unrab | |
|
71 | 69 70 | eqtrdi | |
72 | 34 47 71 | 3sstr4d | |