Metamath Proof Explorer


Theorem mpfrcl

Description: Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypothesis mpfrcl.q Q=ranIevalSubSR
Assertion mpfrcl XQIVSCRingRSubRingS

Proof

Step Hyp Ref Expression
1 mpfrcl.q Q=ranIevalSubSR
2 ne0i XranIevalSubSRranIevalSubSR
3 2 1 eleq2s XQranIevalSubSR
4 rneq IevalSubSR=ranIevalSubSR=ran
5 rn0 ran=
6 4 5 eqtrdi IevalSubSR=ranIevalSubSR=
7 6 necon3i ranIevalSubSRIevalSubSR
8 fveq1 IevalSubS=IevalSubSR=R
9 0fv R=
10 8 9 eqtrdi IevalSubS=IevalSubSR=
11 10 necon3i IevalSubSRIevalSubS
12 reldmevls ReldomevalSub
13 12 ovprc1 ¬IVIevalSubS=
14 13 necon1ai IevalSubSIV
15 n0 IevalSubSaaIevalSubS
16 df-evls evalSub=iV,sCRingBases/brSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
17 16 elmpocl2 aIevalSubSSCRing
18 17 a1d aIevalSubSIVSCRing
19 18 exlimiv aaIevalSubSIVSCRing
20 15 19 sylbi IevalSubSIVSCRing
21 14 20 jcai IevalSubSIVSCRing
22 11 21 syl IevalSubSRIVSCRing
23 fvex BasesV
24 nfcv _bSubRings
25 nfcsb1v _bBases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
26 24 25 nfmpt _brSubRingsBases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
27 csbeq1a b=BasesimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=Bases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
28 27 mpteq2dv b=BasesrSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=rSubRingsBases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
29 23 26 28 csbief Bases/brSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=rSubRingsBases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
30 fveq2 s=SSubRings=SubRingS
31 30 adantl i=Is=SSubRings=SubRingS
32 fveq2 s=SBases=BaseS
33 32 adantl i=Is=SBases=BaseS
34 33 csbeq1d i=Is=SBases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=BaseS/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
35 id i=Ii=I
36 oveq1 s=Ss𝑠r=S𝑠r
37 35 36 oveqan12d i=Is=SimPolys𝑠r=ImPolyS𝑠r
38 37 csbeq1d i=Is=SimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=ImPolyS𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx
39 id s=Ss=S
40 oveq2 i=Ibi=bI
41 39 40 oveqan12rd i=Is=Ss𝑠bi=S𝑠bI
42 41 oveq2d i=Is=SwRingHoms𝑠bi=wRingHomS𝑠bI
43 40 adantr i=Is=Sbi=bI
44 43 xpeq1d i=Is=Sbi×x=bI×x
45 44 mpteq2dv i=Is=Sxrbi×x=xrbI×x
46 45 eqeq2d i=Is=SfalgScw=xrbi×xfalgScw=xrbI×x
47 35 36 oveqan12d i=Is=SimVars𝑠r=ImVarS𝑠r
48 47 coeq2d i=Is=SfimVars𝑠r=fImVarS𝑠r
49 simpl i=Is=Si=I
50 43 mpteq1d i=Is=Sgbigx=gbIgx
51 49 50 mpteq12dv i=Is=Sxigbigx=xIgbIgx
52 48 51 eqeq12d i=Is=SfimVars𝑠r=xigbigxfImVarS𝑠r=xIgbIgx
53 46 52 anbi12d i=Is=SfalgScw=xrbi×xfimVars𝑠r=xigbigxfalgScw=xrbI×xfImVarS𝑠r=xIgbIgx
54 42 53 riotaeqbidv i=Is=SιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=ιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
55 54 csbeq2dv i=Is=SImPolyS𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=ImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
56 38 55 eqtrd i=Is=SimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=ImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
57 56 csbeq2dv i=Is=SBaseS/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=BaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
58 34 57 eqtrd i=Is=SBases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=BaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
59 31 58 mpteq12dv i=Is=SrSubRingsBases/bimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=rSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
60 29 59 eqtrid i=Is=SBases/brSubRingsimPolys𝑠r/wιfwRingHoms𝑠bi|falgScw=xrbi×xfimVars𝑠r=xigbigx=rSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
61 fvex SubRingSV
62 61 mptex rSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgxV
63 60 16 62 ovmpoa IVSCRingIevalSubS=rSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
64 63 dmeqd IVSCRingdomIevalSubS=domrSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
65 eqid rSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx=rSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgx
66 65 dmmptss domrSubRingSBaseS/bImPolyS𝑠r/wιfwRingHomS𝑠bI|falgScw=xrbI×xfImVarS𝑠r=xIgbIgxSubRingS
67 64 66 eqsstrdi IVSCRingdomIevalSubSSubRingS
68 67 ssneld IVSCRing¬RSubRingS¬RdomIevalSubS
69 ndmfv ¬RdomIevalSubSIevalSubSR=
70 68 69 syl6 IVSCRing¬RSubRingSIevalSubSR=
71 70 necon1ad IVSCRingIevalSubSRRSubRingS
72 71 com12 IevalSubSRIVSCRingRSubRingS
73 22 72 jcai IevalSubSRIVSCRingRSubRingS
74 df-3an IVSCRingRSubRingSIVSCRingRSubRingS
75 73 74 sylibr IevalSubSRIVSCRingRSubRingS
76 3 7 75 3syl XQIVSCRingRSubRingS