| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptcnfimad.m |
|
| 2 |
|
mptcnfimad.f |
|
| 3 |
|
mptcnfimad.a |
|
| 4 |
|
mptcnfimad.r |
|
| 5 |
|
mptcnfimad.v |
|
| 6 |
1
|
cnveqi |
|
| 7 |
|
simpr |
|
| 8 |
|
f1of |
|
| 9 |
2 8
|
syl |
|
| 10 |
9 5
|
fexd |
|
| 11 |
10
|
imaexd |
|
| 12 |
11
|
adantr |
|
| 13 |
1 7 12
|
elrnmpt1d |
|
| 14 |
|
f1of1 |
|
| 15 |
2 14
|
syl |
|
| 16 |
|
ssel |
|
| 17 |
|
elpwi |
|
| 18 |
16 17
|
syl6 |
|
| 19 |
3 18
|
syl |
|
| 20 |
19
|
imp |
|
| 21 |
|
f1imacnv |
|
| 22 |
21
|
eqcomd |
|
| 23 |
15 20 22
|
syl2an2r |
|
| 24 |
13 23
|
jca |
|
| 25 |
|
eleq1 |
|
| 26 |
|
imaeq2 |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
25 27
|
anbi12d |
|
| 29 |
24 28
|
syl5ibrcom |
|
| 30 |
29
|
expimpd |
|
| 31 |
12
|
ralrimiva |
|
| 32 |
1
|
fnmpt |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
fvelrnb |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
imaeq2 |
|
| 37 |
36
|
cbvmptv |
|
| 38 |
1 37
|
eqtri |
|
| 39 |
38
|
a1i |
|
| 40 |
|
simpr |
|
| 41 |
40
|
imaeq2d |
|
| 42 |
39 41 7 12
|
fvmptd |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
26
|
eqcoms |
|
| 45 |
44
|
adantl |
|
| 46 |
15 20 21
|
syl2an2r |
|
| 47 |
46 7
|
eqeltrd |
|
| 48 |
47
|
adantr |
|
| 49 |
45 48
|
eqeltrd |
|
| 50 |
49
|
ex |
|
| 51 |
43 50
|
sylbid |
|
| 52 |
51
|
rexlimdva |
|
| 53 |
35 52
|
sylbid |
|
| 54 |
53
|
imp |
|
| 55 |
|
f1ofo |
|
| 56 |
2 55
|
syl |
|
| 57 |
|
ssel |
|
| 58 |
|
elpwi |
|
| 59 |
57 58
|
syl6 |
|
| 60 |
4 59
|
syl |
|
| 61 |
60
|
imp |
|
| 62 |
|
foimacnv |
|
| 63 |
56 61 62
|
syl2an2r |
|
| 64 |
63
|
eqcomd |
|
| 65 |
54 64
|
jca |
|
| 66 |
|
eleq1 |
|
| 67 |
|
imaeq2 |
|
| 68 |
67
|
eqeq2d |
|
| 69 |
66 68
|
anbi12d |
|
| 70 |
65 69
|
syl5ibrcom |
|
| 71 |
70
|
expimpd |
|
| 72 |
30 71
|
impbid |
|
| 73 |
72
|
mptcnv |
|
| 74 |
6 73
|
eqtrid |
|