Metamath Proof Explorer


Theorem mreexexlem2d

Description: Used in mreexexlem4d to prove the induction step in mreexexd . See the proof of Proposition 4.2.1 in FaureFrolicher p. 86 to 87. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexexlem2d.1 φAMooreX
mreexexlem2d.2 N=mrClsA
mreexexlem2d.3 I=mrIndA
mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
mreexexlem2d.5 φFXH
mreexexlem2d.6 φGXH
mreexexlem2d.7 φFNGH
mreexexlem2d.8 φFHI
mreexexlem2d.9 φYF
Assertion mreexexlem2d φgG¬gFYFYHgI

Proof

Step Hyp Ref Expression
1 mreexexlem2d.1 φAMooreX
2 mreexexlem2d.2 N=mrClsA
3 mreexexlem2d.3 I=mrIndA
4 mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
5 mreexexlem2d.5 φFXH
6 mreexexlem2d.6 φGXH
7 mreexexlem2d.7 φFNGH
8 mreexexlem2d.8 φFHI
9 mreexexlem2d.9 φYF
10 7 adantr φGNFHYFNGH
11 1 adantr φGNFHYAMooreX
12 simpr φGNFHYGNFHY
13 ssun2 HFYH
14 difundir FHY=FYHY
15 incom FH=HF
16 ssdifin0 FXHFH=
17 5 16 syl φFH=
18 15 17 eqtr3id φHF=
19 minel YFHF=¬YH
20 9 18 19 syl2anc φ¬YH
21 difsnb ¬YHHY=H
22 20 21 sylib φHY=H
23 22 uneq2d φFYHY=FYH
24 14 23 eqtrid φFHY=FYH
25 13 24 sseqtrrid φHFHY
26 3 1 8 mrissd φFHX
27 26 ssdifssd φFHYX
28 1 2 27 mrcssidd φFHYNFHY
29 25 28 sstrd φHNFHY
30 29 adantr φGNFHYHNFHY
31 12 30 unssd φGNFHYGHNFHY
32 11 2 mrcssvd φGNFHYNFHYX
33 11 2 31 32 mrcssd φGNFHYNGHNNFHY
34 27 adantr φGNFHYFHYX
35 11 2 34 mrcidmd φGNFHYNNFHY=NFHY
36 33 35 sseqtrd φGNFHYNGHNFHY
37 10 36 sstrd φGNFHYFNFHY
38 9 adantr φGNFHYYF
39 37 38 sseldd φGNFHYYNFHY
40 8 adantr φGNFHYFHI
41 ssun1 FFH
42 41 38 sselid φGNFHYYFH
43 2 3 11 40 42 ismri2dad φGNFHY¬YNFHY
44 39 43 pm2.65da φ¬GNFHY
45 nss ¬GNFHYggG¬gNFHY
46 44 45 sylib φggG¬gNFHY
47 simprl φgG¬gNFHYgG
48 ssun1 FYFYH
49 48 24 sseqtrrid φFYFHY
50 49 28 sstrd φFYNFHY
51 50 adantr φgG¬gNFHYFYNFHY
52 simprr φgG¬gNFHY¬gNFHY
53 51 52 ssneldd φgG¬gNFHY¬gFY
54 unass FYHg=FYHg
55 1 adantr φgG¬gNFHYAMooreX
56 4 adantr φgG¬gNFHYs𝒫XyXzNsyNsyNsz
57 8 adantr φgG¬gNFHYFHI
58 difss FYF
59 unss1 FYFFYHFH
60 58 59 mp1i φgG¬gNFHYFYHFH
61 55 2 3 57 60 mrissmrid φgG¬gNFHYFYHI
62 6 adantr φgG¬gNFHYGXH
63 62 difss2d φgG¬gNFHYGX
64 63 47 sseldd φgG¬gNFHYgX
65 24 adantr φgG¬gNFHYFHY=FYH
66 65 fveq2d φgG¬gNFHYNFHY=NFYH
67 52 66 neleqtrd φgG¬gNFHY¬gNFYH
68 55 2 3 56 61 64 67 mreexmrid φgG¬gNFHYFYHgI
69 54 68 eqeltrrid φgG¬gNFHYFYHgI
70 47 53 69 jca32 φgG¬gNFHYgG¬gFYFYHgI
71 70 ex φgG¬gNFHYgG¬gFYFYHgI
72 71 eximdv φggG¬gNFHYggG¬gFYFYHgI
73 46 72 mpd φggG¬gFYFYHgI
74 df-rex gG¬gFYFYHgIggG¬gFYFYHgI
75 73 74 sylibr φgG¬gFYFYHgI