Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrsubco.s | |
|
Assertion | mrsubco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrsubco.s | |
|
2 | eqid | |
|
3 | 1 2 | mrsubf | |
4 | 3 | adantr | |
5 | 1 2 | mrsubf | |
6 | 5 | adantl | |
7 | fco | |
|
8 | 4 6 7 | syl2anc | |
9 | 6 | adantr | |
10 | eldifi | |
|
11 | elun1 | |
|
12 | 10 11 | syl | |
13 | 12 | adantl | |
14 | 13 | s1cld | |
15 | n0i | |
|
16 | 1 | rnfvprc | |
17 | 15 16 | nsyl2 | |
18 | 17 | adantr | |
19 | 18 | adantr | |
20 | eqid | |
|
21 | eqid | |
|
22 | 20 21 2 | mrexval | |
23 | 19 22 | syl | |
24 | 14 23 | eleqtrrd | |
25 | fvco3 | |
|
26 | 9 24 25 | syl2anc | |
27 | 1 2 21 20 | mrsubcn | |
28 | 27 | adantll | |
29 | 28 | fveq2d | |
30 | 1 2 21 20 | mrsubcn | |
31 | 30 | adantlr | |
32 | 26 29 31 | 3eqtrd | |
33 | 32 | ralrimiva | |
34 | 1 2 | mrsubccat | |
35 | 34 | 3expb | |
36 | 35 | adantll | |
37 | 36 | fveq2d | |
38 | simpll | |
|
39 | 6 | adantr | |
40 | simprl | |
|
41 | 39 40 | ffvelcdmd | |
42 | simprr | |
|
43 | 39 42 | ffvelcdmd | |
44 | 1 2 | mrsubccat | |
45 | 38 41 43 44 | syl3anc | |
46 | 37 45 | eqtrd | |
47 | 18 22 | syl | |
48 | 47 | adantr | |
49 | 40 48 | eleqtrd | |
50 | 42 48 | eleqtrd | |
51 | ccatcl | |
|
52 | 49 50 51 | syl2anc | |
53 | 52 48 | eleqtrrd | |
54 | fvco3 | |
|
55 | 39 53 54 | syl2anc | |
56 | fvco3 | |
|
57 | 39 40 56 | syl2anc | |
58 | fvco3 | |
|
59 | 39 42 58 | syl2anc | |
60 | 57 59 | oveq12d | |
61 | 46 55 60 | 3eqtr4d | |
62 | 61 | ralrimivva | |
63 | 1 2 21 20 | elmrsubrn | |
64 | 18 63 | syl | |
65 | 8 33 62 64 | mpbir3and | |