Metamath Proof Explorer


Theorem nlmvscn

Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg and nlmtlm . (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nlmvscn.f F=ScalarW
nlmvscn.sf ·˙=𝑠𝑓W
nlmvscn.j J=TopOpenW
nlmvscn.kf K=TopOpenF
Assertion nlmvscn WNrmMod·˙K×tJCnJ

Proof

Step Hyp Ref Expression
1 nlmvscn.f F=ScalarW
2 nlmvscn.sf ·˙=𝑠𝑓W
3 nlmvscn.j J=TopOpenW
4 nlmvscn.kf K=TopOpenF
5 nlmlmod WNrmModWLMod
6 eqid BaseW=BaseW
7 eqid BaseF=BaseF
8 6 1 7 2 lmodscaf WLMod·˙:BaseF×BaseWBaseW
9 5 8 syl WNrmMod·˙:BaseF×BaseWBaseW
10 eqid distW=distW
11 eqid distF=distF
12 eqid normW=normW
13 eqid normF=normF
14 eqid W=W
15 eqid r2normFx+1=r2normFx+1
16 eqid r2normWy+r2normFx+1=r2normWy+r2normFx+1
17 simpll WNrmModxBaseFyBaseWr+WNrmMod
18 simpr WNrmModxBaseFyBaseWr+r+
19 simplrl WNrmModxBaseFyBaseWr+xBaseF
20 simplrr WNrmModxBaseFyBaseWr+yBaseW
21 1 6 7 10 11 12 13 14 15 16 17 18 19 20 nlmvscnlem1 WNrmModxBaseFyBaseWr+s+zBaseFwBaseWxdistFz<sydistWw<sxWydistWzWw<r
22 21 ralrimiva WNrmModxBaseFyBaseWr+s+zBaseFwBaseWxdistFz<sydistWw<sxWydistWzWw<r
23 simplrl WNrmModxBaseFyBaseWzBaseFwBaseWxBaseF
24 simprl WNrmModxBaseFyBaseWzBaseFwBaseWzBaseF
25 23 24 ovresd WNrmModxBaseFyBaseWzBaseFwBaseWxdistFBaseF×BaseFz=xdistFz
26 25 breq1d WNrmModxBaseFyBaseWzBaseFwBaseWxdistFBaseF×BaseFz<sxdistFz<s
27 simplrr WNrmModxBaseFyBaseWzBaseFwBaseWyBaseW
28 simprr WNrmModxBaseFyBaseWzBaseFwBaseWwBaseW
29 27 28 ovresd WNrmModxBaseFyBaseWzBaseFwBaseWydistWBaseW×BaseWw=ydistWw
30 29 breq1d WNrmModxBaseFyBaseWzBaseFwBaseWydistWBaseW×BaseWw<sydistWw<s
31 26 30 anbi12d WNrmModxBaseFyBaseWzBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sxdistFz<sydistWw<s
32 6 1 7 2 14 scafval xBaseFyBaseWx·˙y=xWy
33 32 ad2antlr WNrmModxBaseFyBaseWzBaseFwBaseWx·˙y=xWy
34 6 1 7 2 14 scafval zBaseFwBaseWz·˙w=zWw
35 34 adantl WNrmModxBaseFyBaseWzBaseFwBaseWz·˙w=zWw
36 33 35 oveq12d WNrmModxBaseFyBaseWzBaseFwBaseWx·˙ydistWBaseW×BaseWz·˙w=xWydistWBaseW×BaseWzWw
37 5 ad2antrr WNrmModxBaseFyBaseWzBaseFwBaseWWLMod
38 6 1 14 7 lmodvscl WLModxBaseFyBaseWxWyBaseW
39 37 23 27 38 syl3anc WNrmModxBaseFyBaseWzBaseFwBaseWxWyBaseW
40 6 1 14 7 lmodvscl WLModzBaseFwBaseWzWwBaseW
41 37 24 28 40 syl3anc WNrmModxBaseFyBaseWzBaseFwBaseWzWwBaseW
42 39 41 ovresd WNrmModxBaseFyBaseWzBaseFwBaseWxWydistWBaseW×BaseWzWw=xWydistWzWw
43 36 42 eqtrd WNrmModxBaseFyBaseWzBaseFwBaseWx·˙ydistWBaseW×BaseWz·˙w=xWydistWzWw
44 43 breq1d WNrmModxBaseFyBaseWzBaseFwBaseWx·˙ydistWBaseW×BaseWz·˙w<rxWydistWzWw<r
45 31 44 imbi12d WNrmModxBaseFyBaseWzBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<rxdistFz<sydistWw<sxWydistWzWw<r
46 45 2ralbidva WNrmModxBaseFyBaseWzBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<rzBaseFwBaseWxdistFz<sydistWw<sxWydistWzWw<r
47 46 rexbidv WNrmModxBaseFyBaseWs+zBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<rs+zBaseFwBaseWxdistFz<sydistWw<sxWydistWzWw<r
48 47 ralbidv WNrmModxBaseFyBaseWr+s+zBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<rr+s+zBaseFwBaseWxdistFz<sydistWw<sxWydistWzWw<r
49 22 48 mpbird WNrmModxBaseFyBaseWr+s+zBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<r
50 49 ralrimivva WNrmModxBaseFyBaseWr+s+zBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<r
51 1 nlmngp2 WNrmModFNrmGrp
52 ngpms FNrmGrpFMetSp
53 51 52 syl WNrmModFMetSp
54 msxms FMetSpF∞MetSp
55 eqid distFBaseF×BaseF=distFBaseF×BaseF
56 7 55 xmsxmet F∞MetSpdistFBaseF×BaseF∞MetBaseF
57 53 54 56 3syl WNrmModdistFBaseF×BaseF∞MetBaseF
58 nlmngp WNrmModWNrmGrp
59 ngpms WNrmGrpWMetSp
60 58 59 syl WNrmModWMetSp
61 msxms WMetSpW∞MetSp
62 eqid distWBaseW×BaseW=distWBaseW×BaseW
63 6 62 xmsxmet W∞MetSpdistWBaseW×BaseW∞MetBaseW
64 60 61 63 3syl WNrmModdistWBaseW×BaseW∞MetBaseW
65 eqid MetOpendistFBaseF×BaseF=MetOpendistFBaseF×BaseF
66 eqid MetOpendistWBaseW×BaseW=MetOpendistWBaseW×BaseW
67 65 66 66 txmetcn distFBaseF×BaseF∞MetBaseFdistWBaseW×BaseW∞MetBaseWdistWBaseW×BaseW∞MetBaseW·˙MetOpendistFBaseF×BaseF×tMetOpendistWBaseW×BaseWCnMetOpendistWBaseW×BaseW·˙:BaseF×BaseWBaseWxBaseFyBaseWr+s+zBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<r
68 57 64 64 67 syl3anc WNrmMod·˙MetOpendistFBaseF×BaseF×tMetOpendistWBaseW×BaseWCnMetOpendistWBaseW×BaseW·˙:BaseF×BaseWBaseWxBaseFyBaseWr+s+zBaseFwBaseWxdistFBaseF×BaseFz<sydistWBaseW×BaseWw<sx·˙ydistWBaseW×BaseWz·˙w<r
69 9 50 68 mpbir2and WNrmMod·˙MetOpendistFBaseF×BaseF×tMetOpendistWBaseW×BaseWCnMetOpendistWBaseW×BaseW
70 4 7 55 mstopn FMetSpK=MetOpendistFBaseF×BaseF
71 53 70 syl WNrmModK=MetOpendistFBaseF×BaseF
72 3 6 62 mstopn WMetSpJ=MetOpendistWBaseW×BaseW
73 60 72 syl WNrmModJ=MetOpendistWBaseW×BaseW
74 71 73 oveq12d WNrmModK×tJ=MetOpendistFBaseF×BaseF×tMetOpendistWBaseW×BaseW
75 74 73 oveq12d WNrmModK×tJCnJ=MetOpendistFBaseF×BaseF×tMetOpendistWBaseW×BaseWCnMetOpendistWBaseW×BaseW
76 69 75 eleqtrrd WNrmMod·˙K×tJCnJ