| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmbdfnlb.1 |
|
| 2 |
|
fveq2 |
|
| 3 |
1
|
simpli |
|
| 4 |
3
|
lnfn0i |
|
| 5 |
2 4
|
eqtrdi |
|
| 6 |
5
|
abs00bd |
|
| 7 |
|
0le0 |
|
| 8 |
|
fveq2 |
|
| 9 |
|
norm0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
oveq2d |
|
| 12 |
1
|
simpri |
|
| 13 |
12
|
recni |
|
| 14 |
13
|
mul01i |
|
| 15 |
11 14
|
eqtr2di |
|
| 16 |
7 15
|
breqtrid |
|
| 17 |
6 16
|
eqbrtrd |
|
| 18 |
17
|
adantl |
|
| 19 |
3
|
lnfnfi |
|
| 20 |
19
|
ffvelcdmi |
|
| 21 |
20
|
abscld |
|
| 22 |
21
|
adantr |
|
| 23 |
22
|
recnd |
|
| 24 |
|
normcl |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
recnd |
|
| 27 |
|
normne0 |
|
| 28 |
27
|
biimpar |
|
| 29 |
23 26 28
|
divrec2d |
|
| 30 |
25 28
|
rereccld |
|
| 31 |
30
|
recnd |
|
| 32 |
|
simpl |
|
| 33 |
3
|
lnfnmuli |
|
| 34 |
31 32 33
|
syl2anc |
|
| 35 |
34
|
fveq2d |
|
| 36 |
20
|
adantr |
|
| 37 |
31 36
|
absmuld |
|
| 38 |
|
normgt0 |
|
| 39 |
38
|
biimpa |
|
| 40 |
25 39
|
recgt0d |
|
| 41 |
|
0re |
|
| 42 |
|
ltle |
|
| 43 |
41 42
|
mpan |
|
| 44 |
30 40 43
|
sylc |
|
| 45 |
30 44
|
absidd |
|
| 46 |
45
|
oveq1d |
|
| 47 |
35 37 46
|
3eqtrrd |
|
| 48 |
29 47
|
eqtrd |
|
| 49 |
|
hvmulcl |
|
| 50 |
31 32 49
|
syl2anc |
|
| 51 |
|
normcl |
|
| 52 |
50 51
|
syl |
|
| 53 |
|
norm1 |
|
| 54 |
|
eqle |
|
| 55 |
52 53 54
|
syl2anc |
|
| 56 |
|
nmfnlb |
|
| 57 |
19 56
|
mp3an1 |
|
| 58 |
50 55 57
|
syl2anc |
|
| 59 |
48 58
|
eqbrtrd |
|
| 60 |
12
|
a1i |
|
| 61 |
|
ledivmul2 |
|
| 62 |
22 60 25 39 61
|
syl112anc |
|
| 63 |
59 62
|
mpbid |
|
| 64 |
18 63
|
pm2.61dane |
|