Metamath Proof Explorer


Theorem nmbdfnlbi

Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmbdfnlb.1 TLinFnnormfnT
Assertion nmbdfnlbi ATAnormfnTnormA

Proof

Step Hyp Ref Expression
1 nmbdfnlb.1 TLinFnnormfnT
2 fveq2 A=0TA=T0
3 1 simpli TLinFn
4 3 lnfn0i T0=0
5 2 4 eqtrdi A=0TA=0
6 5 abs00bd A=0TA=0
7 0le0 00
8 fveq2 A=0normA=norm0
9 norm0 norm0=0
10 8 9 eqtrdi A=0normA=0
11 10 oveq2d A=0normfnTnormA=normfnT0
12 1 simpri normfnT
13 12 recni normfnT
14 13 mul01i normfnT0=0
15 11 14 eqtr2di A=00=normfnTnormA
16 7 15 breqtrid A=00normfnTnormA
17 6 16 eqbrtrd A=0TAnormfnTnormA
18 17 adantl AA=0TAnormfnTnormA
19 3 lnfnfi T:
20 19 ffvelcdmi ATA
21 20 abscld ATA
22 21 adantr AA0TA
23 22 recnd AA0TA
24 normcl AnormA
25 24 adantr AA0normA
26 25 recnd AA0normA
27 normne0 AnormA0A0
28 27 biimpar AA0normA0
29 23 26 28 divrec2d AA0TAnormA=1normATA
30 25 28 rereccld AA01normA
31 30 recnd AA01normA
32 simpl AA0A
33 3 lnfnmuli 1normAAT1normAA=1normATA
34 31 32 33 syl2anc AA0T1normAA=1normATA
35 34 fveq2d AA0T1normAA=1normATA
36 20 adantr AA0TA
37 31 36 absmuld AA01normATA=1normATA
38 normgt0 AA00<normA
39 38 biimpa AA00<normA
40 25 39 recgt0d AA00<1normA
41 0re 0
42 ltle 01normA0<1normA01normA
43 41 42 mpan 1normA0<1normA01normA
44 30 40 43 sylc AA001normA
45 30 44 absidd AA01normA=1normA
46 45 oveq1d AA01normATA=1normATA
47 35 37 46 3eqtrrd AA01normATA=T1normAA
48 29 47 eqtrd AA0TAnormA=T1normAA
49 hvmulcl 1normAA1normAA
50 31 32 49 syl2anc AA01normAA
51 normcl 1normAAnorm1normAA
52 50 51 syl AA0norm1normAA
53 norm1 AA0norm1normAA=1
54 eqle norm1normAAnorm1normAA=1norm1normAA1
55 52 53 54 syl2anc AA0norm1normAA1
56 nmfnlb T:1normAAnorm1normAA1T1normAAnormfnT
57 19 56 mp3an1 1normAAnorm1normAA1T1normAAnormfnT
58 50 55 57 syl2anc AA0T1normAAnormfnT
59 48 58 eqbrtrd AA0TAnormAnormfnT
60 12 a1i AA0normfnT
61 ledivmul2 TAnormfnTnormA0<normATAnormAnormfnTTAnormfnTnormA
62 22 60 25 39 61 syl112anc AA0TAnormAnormfnTTAnormfnTnormA
63 59 62 mpbid AA0TAnormfnTnormA
64 18 63 pm2.61dane ATAnormfnTnormA