Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nmbdfnlb.1 | |
|
Assertion | nmbdfnlbi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmbdfnlb.1 | |
|
2 | fveq2 | |
|
3 | 1 | simpli | |
4 | 3 | lnfn0i | |
5 | 2 4 | eqtrdi | |
6 | 5 | abs00bd | |
7 | 0le0 | |
|
8 | fveq2 | |
|
9 | norm0 | |
|
10 | 8 9 | eqtrdi | |
11 | 10 | oveq2d | |
12 | 1 | simpri | |
13 | 12 | recni | |
14 | 13 | mul01i | |
15 | 11 14 | eqtr2di | |
16 | 7 15 | breqtrid | |
17 | 6 16 | eqbrtrd | |
18 | 17 | adantl | |
19 | 3 | lnfnfi | |
20 | 19 | ffvelcdmi | |
21 | 20 | abscld | |
22 | 21 | adantr | |
23 | 22 | recnd | |
24 | normcl | |
|
25 | 24 | adantr | |
26 | 25 | recnd | |
27 | normne0 | |
|
28 | 27 | biimpar | |
29 | 23 26 28 | divrec2d | |
30 | 25 28 | rereccld | |
31 | 30 | recnd | |
32 | simpl | |
|
33 | 3 | lnfnmuli | |
34 | 31 32 33 | syl2anc | |
35 | 34 | fveq2d | |
36 | 20 | adantr | |
37 | 31 36 | absmuld | |
38 | normgt0 | |
|
39 | 38 | biimpa | |
40 | 25 39 | recgt0d | |
41 | 0re | |
|
42 | ltle | |
|
43 | 41 42 | mpan | |
44 | 30 40 43 | sylc | |
45 | 30 44 | absidd | |
46 | 45 | oveq1d | |
47 | 35 37 46 | 3eqtrrd | |
48 | 29 47 | eqtrd | |
49 | hvmulcl | |
|
50 | 31 32 49 | syl2anc | |
51 | normcl | |
|
52 | 50 51 | syl | |
53 | norm1 | |
|
54 | eqle | |
|
55 | 52 53 54 | syl2anc | |
56 | nmfnlb | |
|
57 | 19 56 | mp3an1 | |
58 | 50 55 57 | syl2anc | |
59 | 48 58 | eqbrtrd | |
60 | 12 | a1i | |
61 | ledivmul2 | |
|
62 | 22 60 25 39 61 | syl112anc | |
63 | 59 62 | mpbid | |
64 | 18 63 | pm2.61dane | |