Metamath Proof Explorer


Theorem nmblolbii

Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmblolbi.1 X=BaseSetU
nmblolbi.4 L=normCVU
nmblolbi.5 M=normCVW
nmblolbi.6 N=UnormOpOLDW
nmblolbi.7 B=UBLnOpW
nmblolbi.u UNrmCVec
nmblolbi.w WNrmCVec
nmblolbii.b TB
Assertion nmblolbii AXMTANTLA

Proof

Step Hyp Ref Expression
1 nmblolbi.1 X=BaseSetU
2 nmblolbi.4 L=normCVU
3 nmblolbi.5 M=normCVW
4 nmblolbi.6 N=UnormOpOLDW
5 nmblolbi.7 B=UBLnOpW
6 nmblolbi.u UNrmCVec
7 nmblolbi.w WNrmCVec
8 nmblolbii.b TB
9 fveq2 A=0vecUTA=T0vecU
10 9 fveq2d A=0vecUMTA=MT0vecU
11 fveq2 A=0vecULA=L0vecU
12 11 oveq2d A=0vecUNTLA=NTL0vecU
13 10 12 breq12d A=0vecUMTANTLAMT0vecUNTL0vecU
14 1 2 nvcl UNrmCVecAXLA
15 6 14 mpan AXLA
16 15 adantr AXA0vecULA
17 eqid 0vecU=0vecU
18 1 17 2 nvz UNrmCVecAXLA=0A=0vecU
19 6 18 mpan AXLA=0A=0vecU
20 19 necon3bid AXLA0A0vecU
21 20 biimpar AXA0vecULA0
22 16 21 rereccld AXA0vecU1LA
23 1 17 2 nvgt0 UNrmCVecAXA0vecU0<LA
24 6 23 mpan AXA0vecU0<LA
25 24 biimpa AXA0vecU0<LA
26 16 25 recgt0d AXA0vecU0<1LA
27 0re 0
28 ltle 01LA0<1LA01LA
29 27 22 28 sylancr AXA0vecU0<1LA01LA
30 26 29 mpd AXA0vecU01LA
31 eqid BaseSetW=BaseSetW
32 1 31 5 blof UNrmCVecWNrmCVecTBT:XBaseSetW
33 6 7 8 32 mp3an T:XBaseSetW
34 33 ffvelcdmi AXTABaseSetW
35 34 adantr AXA0vecUTABaseSetW
36 eqid 𝑠OLDW=𝑠OLDW
37 31 36 3 nvsge0 WNrmCVec1LA01LATABaseSetWM1LA𝑠OLDWTA=1LAMTA
38 7 37 mp3an1 1LA01LATABaseSetWM1LA𝑠OLDWTA=1LAMTA
39 22 30 35 38 syl21anc AXA0vecUM1LA𝑠OLDWTA=1LAMTA
40 22 recnd AXA0vecU1LA
41 simpl AXA0vecUAX
42 eqid ULnOpW=ULnOpW
43 42 5 bloln UNrmCVecWNrmCVecTBTULnOpW
44 6 7 8 43 mp3an TULnOpW
45 6 7 44 3pm3.2i UNrmCVecWNrmCVecTULnOpW
46 eqid 𝑠OLDU=𝑠OLDU
47 1 46 36 42 lnomul UNrmCVecWNrmCVecTULnOpW1LAAXT1LA𝑠OLDUA=1LA𝑠OLDWTA
48 45 47 mpan 1LAAXT1LA𝑠OLDUA=1LA𝑠OLDWTA
49 40 41 48 syl2anc AXA0vecUT1LA𝑠OLDUA=1LA𝑠OLDWTA
50 49 fveq2d AXA0vecUMT1LA𝑠OLDUA=M1LA𝑠OLDWTA
51 31 3 nvcl WNrmCVecTABaseSetWMTA
52 7 34 51 sylancr AXMTA
53 52 adantr AXA0vecUMTA
54 53 recnd AXA0vecUMTA
55 16 recnd AXA0vecULA
56 54 55 21 divrec2d AXA0vecUMTALA=1LAMTA
57 39 50 56 3eqtr4rd AXA0vecUMTALA=MT1LA𝑠OLDUA
58 1 46 nvscl UNrmCVec1LAAX1LA𝑠OLDUAX
59 6 58 mp3an1 1LAAX1LA𝑠OLDUAX
60 59 ancoms AX1LA1LA𝑠OLDUAX
61 40 60 syldan AXA0vecU1LA𝑠OLDUAX
62 1 2 nvcl UNrmCVec1LA𝑠OLDUAXL1LA𝑠OLDUA
63 6 61 62 sylancr AXA0vecUL1LA𝑠OLDUA
64 1 46 17 2 nv1 UNrmCVecAXA0vecUL1LA𝑠OLDUA=1
65 6 64 mp3an1 AXA0vecUL1LA𝑠OLDUA=1
66 eqle L1LA𝑠OLDUAL1LA𝑠OLDUA=1L1LA𝑠OLDUA1
67 63 65 66 syl2anc AXA0vecUL1LA𝑠OLDUA1
68 6 7 33 3pm3.2i UNrmCVecWNrmCVecT:XBaseSetW
69 1 31 2 3 4 nmoolb UNrmCVecWNrmCVecT:XBaseSetW1LA𝑠OLDUAXL1LA𝑠OLDUA1MT1LA𝑠OLDUANT
70 68 69 mpan 1LA𝑠OLDUAXL1LA𝑠OLDUA1MT1LA𝑠OLDUANT
71 61 67 70 syl2anc AXA0vecUMT1LA𝑠OLDUANT
72 57 71 eqbrtrd AXA0vecUMTALANT
73 1 31 4 5 nmblore UNrmCVecWNrmCVecTBNT
74 6 7 8 73 mp3an NT
75 74 a1i AXA0vecUNT
76 ledivmul2 MTANTLA0<LAMTALANTMTANTLA
77 53 75 16 25 76 syl112anc AXA0vecUMTALANTMTANTLA
78 72 77 mpbid AXA0vecUMTANTLA
79 0le0 00
80 eqid 0vecW=0vecW
81 1 31 17 80 42 lno0 UNrmCVecWNrmCVecTULnOpWT0vecU=0vecW
82 6 7 44 81 mp3an T0vecU=0vecW
83 82 fveq2i MT0vecU=M0vecW
84 80 3 nvz0 WNrmCVecM0vecW=0
85 7 84 ax-mp M0vecW=0
86 83 85 eqtri MT0vecU=0
87 17 2 nvz0 UNrmCVecL0vecU=0
88 6 87 ax-mp L0vecU=0
89 88 oveq2i NTL0vecU=NT0
90 74 recni NT
91 90 mul01i NT0=0
92 89 91 eqtri NTL0vecU=0
93 79 86 92 3brtr4i MT0vecUNTL0vecU
94 93 a1i AXMT0vecUNTL0vecU
95 13 78 94 pm2.61ne AXMTANTLA