Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmoleub2.n | |
|
nmoleub2.v | |
||
nmoleub2.l | |
||
nmoleub2.m | |
||
nmoleub2.g | |
||
nmoleub2.w | |
||
nmoleub2.s | |
||
nmoleub2.t | |
||
nmoleub2.f | |
||
nmoleub2.a | |
||
nmoleub2.r | |
||
nmoleub2a.5 | |
||
nmoleub2lem2.6 | |
||
nmoleub2lem2.7 | |
||
Assertion | nmoleub2lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoleub2.n | |
|
2 | nmoleub2.v | |
|
3 | nmoleub2.l | |
|
4 | nmoleub2.m | |
|
5 | nmoleub2.g | |
|
6 | nmoleub2.w | |
|
7 | nmoleub2.s | |
|
8 | nmoleub2.t | |
|
9 | nmoleub2.f | |
|
10 | nmoleub2.a | |
|
11 | nmoleub2.r | |
|
12 | nmoleub2a.5 | |
|
13 | nmoleub2lem2.6 | |
|
14 | nmoleub2lem2.7 | |
|
15 | lmghm | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 16 17 | ghmid | |
19 | 9 15 18 | 3syl | |
20 | 19 | fveq2d | |
21 | 8 | elin1d | |
22 | nlmngp | |
|
23 | 4 17 | nm0 | |
24 | 21 22 23 | 3syl | |
25 | 20 24 | eqtrd | |
26 | 25 | adantr | |
27 | 26 | oveq1d | |
28 | 11 | adantr | |
29 | 28 | rpcnd | |
30 | 28 | rpne0d | |
31 | 29 30 | div0d | |
32 | 27 31 | eqtrd | |
33 | 7 | elin1d | |
34 | nlmngp | |
|
35 | 3 16 | nm0 | |
36 | 33 34 35 | 3syl | |
37 | 36 | adantr | |
38 | 28 | rpgt0d | |
39 | 37 38 | eqbrtrd | |
40 | fveq2 | |
|
41 | 40 | breq1d | |
42 | 2fveq3 | |
|
43 | 42 | oveq1d | |
44 | 43 | breq1d | |
45 | 41 44 | imbi12d | |
46 | 33 34 | syl | |
47 | 2 3 | nmcl | |
48 | 46 47 | sylan | |
49 | 11 | adantr | |
50 | 49 | rpred | |
51 | 48 50 14 | syl2anc | |
52 | 51 | imim1d | |
53 | 52 | ralimdva | |
54 | 53 | imp | |
55 | ngpgrp | |
|
56 | 2 16 | grpidcl | |
57 | 46 55 56 | 3syl | |
58 | 57 | adantr | |
59 | 45 54 58 | rspcdva | |
60 | 39 59 | mpd | |
61 | 32 60 | eqbrtrrd | |
62 | simp-4l | |
|
63 | 62 7 | syl | |
64 | 62 8 | syl | |
65 | 62 9 | syl | |
66 | 62 10 | syl | |
67 | 62 11 | syl | |
68 | 62 12 | syl | |
69 | eqid | |
|
70 | simpllr | |
|
71 | 61 | ad3antrrr | |
72 | simplrl | |
|
73 | simplrr | |
|
74 | 54 | ad3antrrr | |
75 | fveq2 | |
|
76 | 75 | breq1d | |
77 | 2fveq3 | |
|
78 | 77 | oveq1d | |
79 | 78 | breq1d | |
80 | 76 79 | imbi12d | |
81 | 80 | rspccv | |
82 | 74 81 | syl | |
83 | simpr | |
|
84 | 1 2 3 4 5 6 63 64 65 66 67 68 69 70 71 72 73 82 83 | nmoleub2lem3 | |
85 | iman | |
|
86 | 84 85 | mpbir | |
87 | 48 50 13 | syl2anc | |
88 | 1 2 3 4 5 6 7 8 9 10 11 61 86 87 | nmoleub2lem | |