Metamath Proof Explorer


Theorem nmoleub2lem2

Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015)

Ref Expression
Hypotheses nmoleub2.n N=SnormOpT
nmoleub2.v V=BaseS
nmoleub2.l L=normS
nmoleub2.m M=normT
nmoleub2.g G=ScalarS
nmoleub2.w K=BaseG
nmoleub2.s φSNrmModCMod
nmoleub2.t φTNrmModCMod
nmoleub2.f φFSLMHomT
nmoleub2.a φA*
nmoleub2.r φR+
nmoleub2a.5 φK
nmoleub2lem2.6 LxRLxORLxR
nmoleub2lem2.7 LxRLx<RLxOR
Assertion nmoleub2lem2 φNFAxVLxORMFxRA

Proof

Step Hyp Ref Expression
1 nmoleub2.n N=SnormOpT
2 nmoleub2.v V=BaseS
3 nmoleub2.l L=normS
4 nmoleub2.m M=normT
5 nmoleub2.g G=ScalarS
6 nmoleub2.w K=BaseG
7 nmoleub2.s φSNrmModCMod
8 nmoleub2.t φTNrmModCMod
9 nmoleub2.f φFSLMHomT
10 nmoleub2.a φA*
11 nmoleub2.r φR+
12 nmoleub2a.5 φK
13 nmoleub2lem2.6 LxRLxORLxR
14 nmoleub2lem2.7 LxRLx<RLxOR
15 lmghm FSLMHomTFSGrpHomT
16 eqid 0S=0S
17 eqid 0T=0T
18 16 17 ghmid FSGrpHomTF0S=0T
19 9 15 18 3syl φF0S=0T
20 19 fveq2d φMF0S=M0T
21 8 elin1d φTNrmMod
22 nlmngp TNrmModTNrmGrp
23 4 17 nm0 TNrmGrpM0T=0
24 21 22 23 3syl φM0T=0
25 20 24 eqtrd φMF0S=0
26 25 adantr φxVLxORMFxRAMF0S=0
27 26 oveq1d φxVLxORMFxRAMF0SR=0R
28 11 adantr φxVLxORMFxRAR+
29 28 rpcnd φxVLxORMFxRAR
30 28 rpne0d φxVLxORMFxRAR0
31 29 30 div0d φxVLxORMFxRA0R=0
32 27 31 eqtrd φxVLxORMFxRAMF0SR=0
33 7 elin1d φSNrmMod
34 nlmngp SNrmModSNrmGrp
35 3 16 nm0 SNrmGrpL0S=0
36 33 34 35 3syl φL0S=0
37 36 adantr φxVLxORMFxRAL0S=0
38 28 rpgt0d φxVLxORMFxRA0<R
39 37 38 eqbrtrd φxVLxORMFxRAL0S<R
40 fveq2 x=0SLx=L0S
41 40 breq1d x=0SLx<RL0S<R
42 2fveq3 x=0SMFx=MF0S
43 42 oveq1d x=0SMFxR=MF0SR
44 43 breq1d x=0SMFxRAMF0SRA
45 41 44 imbi12d x=0SLx<RMFxRAL0S<RMF0SRA
46 33 34 syl φSNrmGrp
47 2 3 nmcl SNrmGrpxVLx
48 46 47 sylan φxVLx
49 11 adantr φxVR+
50 49 rpred φxVR
51 48 50 14 syl2anc φxVLx<RLxOR
52 51 imim1d φxVLxORMFxRALx<RMFxRA
53 52 ralimdva φxVLxORMFxRAxVLx<RMFxRA
54 53 imp φxVLxORMFxRAxVLx<RMFxRA
55 ngpgrp SNrmGrpSGrp
56 2 16 grpidcl SGrp0SV
57 46 55 56 3syl φ0SV
58 57 adantr φxVLxORMFxRA0SV
59 45 54 58 rspcdva φxVLxORMFxRAL0S<RMF0SRA
60 39 59 mpd φxVLxORMFxRAMF0SRA
61 32 60 eqbrtrrd φxVLxORMFxRA0A
62 simp-4l φxVLxORMFxRAAyVy0S¬MFyALyφ
63 62 7 syl φxVLxORMFxRAAyVy0S¬MFyALySNrmModCMod
64 62 8 syl φxVLxORMFxRAAyVy0S¬MFyALyTNrmModCMod
65 62 9 syl φxVLxORMFxRAAyVy0S¬MFyALyFSLMHomT
66 62 10 syl φxVLxORMFxRAAyVy0S¬MFyALyA*
67 62 11 syl φxVLxORMFxRAAyVy0S¬MFyALyR+
68 62 12 syl φxVLxORMFxRAAyVy0S¬MFyALyK
69 eqid S=S
70 simpllr φxVLxORMFxRAAyVy0S¬MFyALyA
71 61 ad3antrrr φxVLxORMFxRAAyVy0S¬MFyALy0A
72 simplrl φxVLxORMFxRAAyVy0S¬MFyALyyV
73 simplrr φxVLxORMFxRAAyVy0S¬MFyALyy0S
74 54 ad3antrrr φxVLxORMFxRAAyVy0S¬MFyALyxVLx<RMFxRA
75 fveq2 x=zSyLx=LzSy
76 75 breq1d x=zSyLx<RLzSy<R
77 2fveq3 x=zSyMFx=MFzSy
78 77 oveq1d x=zSyMFxR=MFzSyR
79 78 breq1d x=zSyMFxRAMFzSyRA
80 76 79 imbi12d x=zSyLx<RMFxRALzSy<RMFzSyRA
81 80 rspccv xVLx<RMFxRAzSyVLzSy<RMFzSyRA
82 74 81 syl φxVLxORMFxRAAyVy0S¬MFyALyzSyVLzSy<RMFzSyRA
83 simpr φxVLxORMFxRAAyVy0S¬MFyALy¬MFyALy
84 1 2 3 4 5 6 63 64 65 66 67 68 69 70 71 72 73 82 83 nmoleub2lem3 ¬φxVLxORMFxRAAyVy0S¬MFyALy
85 iman φxVLxORMFxRAAyVy0SMFyALy¬φxVLxORMFxRAAyVy0S¬MFyALy
86 84 85 mpbir φxVLxORMFxRAAyVy0SMFyALy
87 48 50 13 syl2anc φxVLxORLxR
88 1 2 3 4 5 6 7 8 9 10 11 61 86 87 nmoleub2lem φNFAxVLxORMFxRA