Metamath Proof Explorer


Theorem nn0expgcd

Description: Exponentiation distributes over GCD. nn0gcdsq extended to nonnegative exponents. expgcd extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion nn0expgcd A0B0N0AgcdBN=ANgcdBN

Proof

Step Hyp Ref Expression
1 elnn0 A0AA=0
2 elnn0 B0BB=0
3 expgcd ABN0AgcdBN=ANgcdBN
4 3 3expia ABN0AgcdBN=ANgcdBN
5 elnn0 N0NN=0
6 0exp N0N=0
7 6 3ad2ant3 A=0BN0N=0
8 7 oveq1d A=0BN0NgcdBN=0gcdBN
9 simp2 A=0BNB
10 nnnn0 NN0
11 10 3ad2ant3 A=0BNN0
12 9 11 nnexpcld A=0BNBN
13 12 nnzd A=0BNBN
14 gcd0id BN0gcdBN=BN
15 13 14 syl A=0BN0gcdBN=BN
16 12 nnred A=0BNBN
17 0red A=0BN0
18 12 nngt0d A=0BN0<BN
19 17 16 18 ltled A=0BN0BN
20 16 19 absidd A=0BNBN=BN
21 8 15 20 3eqtrrd A=0BNBN=0NgcdBN
22 oveq1 A=0AgcdB=0gcdB
23 22 3ad2ant1 A=0BNAgcdB=0gcdB
24 nnz BB
25 24 3ad2ant2 A=0BNB
26 gcd0id B0gcdB=B
27 25 26 syl A=0BN0gcdB=B
28 nnre BB
29 0red B0
30 nngt0 B0<B
31 29 28 30 ltled B0B
32 28 31 absidd BB=B
33 32 3ad2ant2 A=0BNB=B
34 23 27 33 3eqtrd A=0BNAgcdB=B
35 34 oveq1d A=0BNAgcdBN=BN
36 oveq1 A=0AN=0N
37 36 3ad2ant1 A=0BNAN=0N
38 37 oveq1d A=0BNANgcdBN=0NgcdBN
39 21 35 38 3eqtr4d A=0BNAgcdBN=ANgcdBN
40 39 3expia A=0BNAgcdBN=ANgcdBN
41 1z 1
42 gcd1 11gcd1=1
43 41 42 ax-mp 1gcd1=1
44 43 eqcomi 1=1gcd1
45 simp1 A=0BN=0A=0
46 45 oveq1d A=0BN=0AgcdB=0gcdB
47 simp2 A=0BN=0B
48 47 nnzd A=0BN=0B
49 48 26 syl A=0BN=00gcdB=B
50 32 3ad2ant2 A=0BN=0B=B
51 46 49 50 3eqtrd A=0BN=0AgcdB=B
52 simp3 A=0BN=0N=0
53 51 52 oveq12d A=0BN=0AgcdBN=B0
54 47 nncnd A=0BN=0B
55 54 exp0d A=0BN=0B0=1
56 53 55 eqtrd A=0BN=0AgcdBN=1
57 45 52 oveq12d A=0BN=0AN=00
58 0exp0e1 00=1
59 58 a1i A=0BN=000=1
60 57 59 eqtrd A=0BN=0AN=1
61 52 oveq2d A=0BN=0BN=B0
62 61 55 eqtrd A=0BN=0BN=1
63 60 62 oveq12d A=0BN=0ANgcdBN=1gcd1
64 44 56 63 3eqtr4a A=0BN=0AgcdBN=ANgcdBN
65 64 3expia A=0BN=0AgcdBN=ANgcdBN
66 40 65 jaod A=0BNN=0AgcdBN=ANgcdBN
67 5 66 biimtrid A=0BN0AgcdBN=ANgcdBN
68 nnnn0 AA0
69 68 3ad2ant1 AB=0NA0
70 10 3ad2ant3 AB=0NN0
71 69 70 nn0expcld AB=0NAN0
72 nn0gcdid0 AN0ANgcd0=AN
73 71 72 syl AB=0NANgcd0=AN
74 simp2 AB=0NB=0
75 74 oveq1d AB=0NBN=0N
76 6 3ad2ant3 AB=0N0N=0
77 75 76 eqtrd AB=0NBN=0
78 77 oveq2d AB=0NANgcdBN=ANgcd0
79 74 oveq2d AB=0NAgcdB=Agcd0
80 nn0gcdid0 A0Agcd0=A
81 68 80 syl AAgcd0=A
82 81 3ad2ant1 AB=0NAgcd0=A
83 79 82 eqtrd AB=0NAgcdB=A
84 83 oveq1d AB=0NAgcdBN=AN
85 73 78 84 3eqtr4rd AB=0NAgcdBN=ANgcdBN
86 85 3expia AB=0NAgcdBN=ANgcdBN
87 nncn AA
88 87 exp0d AA0=1
89 88 43 eqtr4di AA0=1gcd1
90 81 oveq1d AAgcd00=A0
91 58 a1i A00=1
92 88 91 oveq12d AA0gcd00=1gcd1
93 89 90 92 3eqtr4d AAgcd00=A0gcd00
94 93 3ad2ant1 AB=0N=0Agcd00=A0gcd00
95 simp2 AB=0N=0B=0
96 95 oveq2d AB=0N=0AgcdB=Agcd0
97 simp3 AB=0N=0N=0
98 96 97 oveq12d AB=0N=0AgcdBN=Agcd00
99 97 oveq2d AB=0N=0AN=A0
100 95 97 oveq12d AB=0N=0BN=00
101 99 100 oveq12d AB=0N=0ANgcdBN=A0gcd00
102 94 98 101 3eqtr4d AB=0N=0AgcdBN=ANgcdBN
103 102 3expia AB=0N=0AgcdBN=ANgcdBN
104 86 103 jaod AB=0NN=0AgcdBN=ANgcdBN
105 5 104 biimtrid AB=0N0AgcdBN=ANgcdBN
106 gcd0val 0gcd0=0
107 6 106 eqtr4di N0N=0gcd0
108 106 a1i N0gcd0=0
109 108 oveq1d N0gcd0N=0N
110 6 6 oveq12d N0Ngcd0N=0gcd0
111 107 109 110 3eqtr4d N0gcd0N=0Ngcd0N
112 111 3ad2ant3 A=0B=0N0gcd0N=0Ngcd0N
113 simp1 A=0B=0NA=0
114 simp2 A=0B=0NB=0
115 113 114 oveq12d A=0B=0NAgcdB=0gcd0
116 115 oveq1d A=0B=0NAgcdBN=0gcd0N
117 113 oveq1d A=0B=0NAN=0N
118 114 oveq1d A=0B=0NBN=0N
119 117 118 oveq12d A=0B=0NANgcdBN=0Ngcd0N
120 112 116 119 3eqtr4d A=0B=0NAgcdBN=ANgcdBN
121 120 3expia A=0B=0NAgcdBN=ANgcdBN
122 58 43 eqtr4i 00=1gcd1
123 106 oveq1i 0gcd00=00
124 58 58 oveq12i 00gcd00=1gcd1
125 122 123 124 3eqtr4i 0gcd00=00gcd00
126 simp1 A=0B=0N=0A=0
127 simp2 A=0B=0N=0B=0
128 126 127 oveq12d A=0B=0N=0AgcdB=0gcd0
129 simp3 A=0B=0N=0N=0
130 128 129 oveq12d A=0B=0N=0AgcdBN=0gcd00
131 126 129 oveq12d A=0B=0N=0AN=00
132 127 129 oveq12d A=0B=0N=0BN=00
133 131 132 oveq12d A=0B=0N=0ANgcdBN=00gcd00
134 125 130 133 3eqtr4a A=0B=0N=0AgcdBN=ANgcdBN
135 134 3expia A=0B=0N=0AgcdBN=ANgcdBN
136 121 135 jaod A=0B=0NN=0AgcdBN=ANgcdBN
137 5 136 biimtrid A=0B=0N0AgcdBN=ANgcdBN
138 4 67 105 137 ccase AA=0BB=0N0AgcdBN=ANgcdBN
139 1 2 138 syl2anb A0B0N0AgcdBN=ANgcdBN
140 139 3impia A0B0N0AgcdBN=ANgcdBN