Description: Lemma for noinfbnd1 . If U is a prolongment of T and in B , then ( Udom T ) is not 1o . (Contributed by Scott Fenton, 9-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | noinfbnd1.1 | |
|
Assertion | noinfbnd1lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noinfbnd1.1 | |
|
2 | 1 | noinfno | |
3 | 2 | 3ad2ant2 | |
4 | nodmord | |
|
5 | ordirr | |
|
6 | 3 4 5 | 3syl | |
7 | simpl3l | |
|
8 | ndmfv | |
|
9 | 1n0 | |
|
10 | 9 | necomi | |
11 | neeq1 | |
|
12 | 10 11 | mpbiri | |
13 | 12 | neneqd | |
14 | 8 13 | syl | |
15 | 14 | con4i | |
16 | 15 | adantl | |
17 | simpl2l | |
|
18 | 17 7 | sseldd | |
19 | 18 | adantr | |
20 | 17 | adantr | |
21 | simprl | |
|
22 | 20 21 | sseldd | |
23 | 3 | adantr | |
24 | nodmon | |
|
25 | 23 24 | syl | |
26 | 25 | adantr | |
27 | simpl3r | |
|
28 | 27 | adantr | |
29 | simpll1 | |
|
30 | simpll2 | |
|
31 | simpll3 | |
|
32 | simpr | |
|
33 | 1 | noinfbnd1lem2 | |
34 | 29 30 31 32 33 | syl112anc | |
35 | 28 34 | eqtr4d | |
36 | simplr | |
|
37 | simprr | |
|
38 | nogesgn1ores | |
|
39 | 19 22 26 35 36 37 38 | syl321anc | |
40 | 39 | expr | |
41 | 40 | ralrimiva | |
42 | dmeq | |
|
43 | 42 | eleq2d | |
44 | breq1 | |
|
45 | 44 | notbid | |
46 | reseq1 | |
|
47 | 46 | eqeq1d | |
48 | 45 47 | imbi12d | |
49 | 48 | ralbidv | |
50 | 43 49 | anbi12d | |
51 | 50 | rspcev | |
52 | 7 16 41 51 | syl12anc | |
53 | 1 | noinfdm | |
54 | 53 | eleq2d | |
55 | 54 | 3ad2ant1 | |
56 | eleq1 | |
|
57 | suceq | |
|
58 | 57 | reseq2d | |
59 | 57 | reseq2d | |
60 | 58 59 | eqeq12d | |
61 | 60 | imbi2d | |
62 | 61 | ralbidv | |
63 | 56 62 | anbi12d | |
64 | 63 | rexbidv | |
65 | 64 | elabg | |
66 | 3 24 65 | 3syl | |
67 | 55 66 | bitrd | |
68 | 67 | adantr | |
69 | 52 68 | mpbird | |
70 | 6 69 | mtand | |
71 | 70 | neqned | |