Description: Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrcls.o | |
|
ntrcls.d | |
||
ntrcls.r | |
||
Assertion | ntrclsk4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | |
|
2 | ntrcls.d | |
|
3 | ntrcls.r | |
|
4 | 2fveq3 | |
|
5 | fveq2 | |
|
6 | 4 5 | eqeq12d | |
7 | 6 | cbvralvw | |
8 | 2 3 | ntrclsrcomplex | |
9 | 8 | adantr | |
10 | 2 3 | ntrclsrcomplex | |
11 | 10 | adantr | |
12 | difeq2 | |
|
13 | 12 | eqeq2d | |
14 | 13 | adantl | |
15 | elpwi | |
|
16 | dfss4 | |
|
17 | 15 16 | sylib | |
18 | 17 | eqcomd | |
19 | 18 | adantl | |
20 | 11 14 19 | rspcedvd | |
21 | 2fveq3 | |
|
22 | fveq2 | |
|
23 | 21 22 | eqeq12d | |
24 | 23 | 3ad2ant3 | |
25 | 1 2 3 | ntrclsiex | |
26 | elmapi | |
|
27 | 25 26 | syl | |
28 | 27 8 | ffvelcdmd | |
29 | 27 28 | ffvelcdmd | |
30 | 29 | elpwid | |
31 | 28 | elpwid | |
32 | rcompleq | |
|
33 | 30 31 32 | syl2anc | |
34 | 33 | adantr | |
35 | 1 2 3 | ntrclsnvobr | |
36 | 35 | adantr | |
37 | 1 2 35 | ntrclsiex | |
38 | elmapi | |
|
39 | 37 38 | syl | |
40 | 39 | ffvelcdmda | |
41 | 1 2 36 40 | ntrclsfv | |
42 | simpr | |
|
43 | 1 2 36 42 | ntrclsfv | |
44 | 43 | difeq2d | |
45 | dfss4 | |
|
46 | 31 45 | sylib | |
47 | 46 | adantr | |
48 | 44 47 | eqtrd | |
49 | 48 | fveq2d | |
50 | 49 | difeq2d | |
51 | 41 50 | eqtrd | |
52 | 51 43 | eqeq12d | |
53 | 34 52 | bitr4d | |
54 | 53 | 3adant3 | |
55 | 24 54 | bitrd | |
56 | 9 20 55 | ralxfrd2 | |
57 | 7 56 | bitrid | |