Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|
2 |
|
ntrcls.d |
|
3 |
|
ntrcls.r |
|
4 |
|
2fveq3 |
|
5 |
|
fveq2 |
|
6 |
4 5
|
eqeq12d |
|
7 |
6
|
cbvralvw |
|
8 |
2 3
|
ntrclsrcomplex |
|
9 |
8
|
adantr |
|
10 |
2 3
|
ntrclsrcomplex |
|
11 |
10
|
adantr |
|
12 |
|
difeq2 |
|
13 |
12
|
eqeq2d |
|
14 |
13
|
adantl |
|
15 |
|
elpwi |
|
16 |
|
dfss4 |
|
17 |
15 16
|
sylib |
|
18 |
17
|
eqcomd |
|
19 |
18
|
adantl |
|
20 |
11 14 19
|
rspcedvd |
|
21 |
|
2fveq3 |
|
22 |
|
fveq2 |
|
23 |
21 22
|
eqeq12d |
|
24 |
23
|
3ad2ant3 |
|
25 |
1 2 3
|
ntrclsiex |
|
26 |
|
elmapi |
|
27 |
25 26
|
syl |
|
28 |
27 8
|
ffvelrnd |
|
29 |
27 28
|
ffvelrnd |
|
30 |
29
|
elpwid |
|
31 |
28
|
elpwid |
|
32 |
|
rcompleq |
|
33 |
30 31 32
|
syl2anc |
|
34 |
33
|
adantr |
|
35 |
1 2 3
|
ntrclsnvobr |
|
36 |
35
|
adantr |
|
37 |
1 2 35
|
ntrclsiex |
|
38 |
|
elmapi |
|
39 |
37 38
|
syl |
|
40 |
39
|
ffvelrnda |
|
41 |
1 2 36 40
|
ntrclsfv |
|
42 |
|
simpr |
|
43 |
1 2 36 42
|
ntrclsfv |
|
44 |
43
|
difeq2d |
|
45 |
|
dfss4 |
|
46 |
31 45
|
sylib |
|
47 |
46
|
adantr |
|
48 |
44 47
|
eqtrd |
|
49 |
48
|
fveq2d |
|
50 |
49
|
difeq2d |
|
51 |
41 50
|
eqtrd |
|
52 |
51 43
|
eqeq12d |
|
53 |
34 52
|
bitr4d |
|
54 |
53
|
3adant3 |
|
55 |
24 54
|
bitrd |
|
56 |
9 20 55
|
ralxfrd2 |
|
57 |
7 56
|
syl5bb |
|