Metamath Proof Explorer


Theorem ntrclsk4

Description: Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
Assertion ntrclsk4 φs𝒫BIIs=Iss𝒫BKKs=Ks

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 2fveq3 s=tIIs=IIt
5 fveq2 s=tIs=It
6 4 5 eqeq12d s=tIIs=IsIIt=It
7 6 cbvralvw s𝒫BIIs=Ist𝒫BIIt=It
8 2 3 ntrclsrcomplex φBs𝒫B
9 8 adantr φs𝒫BBs𝒫B
10 2 3 ntrclsrcomplex φBt𝒫B
11 10 adantr φt𝒫BBt𝒫B
12 difeq2 s=BtBs=BBt
13 12 eqeq2d s=Btt=Bst=BBt
14 13 adantl φt𝒫Bs=Btt=Bst=BBt
15 elpwi t𝒫BtB
16 dfss4 tBBBt=t
17 15 16 sylib t𝒫BBBt=t
18 17 eqcomd t𝒫Bt=BBt
19 18 adantl φt𝒫Bt=BBt
20 11 14 19 rspcedvd φt𝒫Bs𝒫Bt=Bs
21 2fveq3 t=BsIIt=IIBs
22 fveq2 t=BsIt=IBs
23 21 22 eqeq12d t=BsIIt=ItIIBs=IBs
24 23 3ad2ant3 φs𝒫Bt=BsIIt=ItIIBs=IBs
25 1 2 3 ntrclsiex φI𝒫B𝒫B
26 elmapi I𝒫B𝒫BI:𝒫B𝒫B
27 25 26 syl φI:𝒫B𝒫B
28 27 8 ffvelcdmd φIBs𝒫B
29 27 28 ffvelcdmd φIIBs𝒫B
30 29 elpwid φIIBsB
31 28 elpwid φIBsB
32 rcompleq IIBsBIBsBIIBs=IBsBIIBs=BIBs
33 30 31 32 syl2anc φIIBs=IBsBIIBs=BIBs
34 33 adantr φs𝒫BIIBs=IBsBIIBs=BIBs
35 1 2 3 ntrclsnvobr φKDI
36 35 adantr φs𝒫BKDI
37 1 2 35 ntrclsiex φK𝒫B𝒫B
38 elmapi K𝒫B𝒫BK:𝒫B𝒫B
39 37 38 syl φK:𝒫B𝒫B
40 39 ffvelcdmda φs𝒫BKs𝒫B
41 1 2 36 40 ntrclsfv φs𝒫BKKs=BIBKs
42 simpr φs𝒫Bs𝒫B
43 1 2 36 42 ntrclsfv φs𝒫BKs=BIBs
44 43 difeq2d φs𝒫BBKs=BBIBs
45 dfss4 IBsBBBIBs=IBs
46 31 45 sylib φBBIBs=IBs
47 46 adantr φs𝒫BBBIBs=IBs
48 44 47 eqtrd φs𝒫BBKs=IBs
49 48 fveq2d φs𝒫BIBKs=IIBs
50 49 difeq2d φs𝒫BBIBKs=BIIBs
51 41 50 eqtrd φs𝒫BKKs=BIIBs
52 51 43 eqeq12d φs𝒫BKKs=KsBIIBs=BIBs
53 34 52 bitr4d φs𝒫BIIBs=IBsKKs=Ks
54 53 3adant3 φs𝒫Bt=BsIIBs=IBsKKs=Ks
55 24 54 bitrd φs𝒫Bt=BsIIt=ItKKs=Ks
56 9 20 55 ralxfrd2 φt𝒫BIIt=Its𝒫BKKs=Ks
57 7 56 bitrid φs𝒫BIIs=Iss𝒫BKKs=Ks