Metamath Proof Explorer


Theorem ntrclsk4

Description: Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
Assertion ntrclsk4 φ s 𝒫 B I I s = I s s 𝒫 B K K s = K s

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 2fveq3 s = t I I s = I I t
5 fveq2 s = t I s = I t
6 4 5 eqeq12d s = t I I s = I s I I t = I t
7 6 cbvralvw s 𝒫 B I I s = I s t 𝒫 B I I t = I t
8 2 3 ntrclsrcomplex φ B s 𝒫 B
9 8 adantr φ s 𝒫 B B s 𝒫 B
10 2 3 ntrclsrcomplex φ B t 𝒫 B
11 10 adantr φ t 𝒫 B B t 𝒫 B
12 difeq2 s = B t B s = B B t
13 12 eqeq2d s = B t t = B s t = B B t
14 13 adantl φ t 𝒫 B s = B t t = B s t = B B t
15 elpwi t 𝒫 B t B
16 dfss4 t B B B t = t
17 15 16 sylib t 𝒫 B B B t = t
18 17 eqcomd t 𝒫 B t = B B t
19 18 adantl φ t 𝒫 B t = B B t
20 11 14 19 rspcedvd φ t 𝒫 B s 𝒫 B t = B s
21 2fveq3 t = B s I I t = I I B s
22 fveq2 t = B s I t = I B s
23 21 22 eqeq12d t = B s I I t = I t I I B s = I B s
24 23 3ad2ant3 φ s 𝒫 B t = B s I I t = I t I I B s = I B s
25 1 2 3 ntrclsiex φ I 𝒫 B 𝒫 B
26 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
27 25 26 syl φ I : 𝒫 B 𝒫 B
28 27 8 ffvelrnd φ I B s 𝒫 B
29 27 28 ffvelrnd φ I I B s 𝒫 B
30 29 elpwid φ I I B s B
31 28 elpwid φ I B s B
32 rcompleq I I B s B I B s B I I B s = I B s B I I B s = B I B s
33 30 31 32 syl2anc φ I I B s = I B s B I I B s = B I B s
34 33 adantr φ s 𝒫 B I I B s = I B s B I I B s = B I B s
35 1 2 3 ntrclsnvobr φ K D I
36 35 adantr φ s 𝒫 B K D I
37 1 2 35 ntrclsiex φ K 𝒫 B 𝒫 B
38 elmapi K 𝒫 B 𝒫 B K : 𝒫 B 𝒫 B
39 37 38 syl φ K : 𝒫 B 𝒫 B
40 39 ffvelrnda φ s 𝒫 B K s 𝒫 B
41 1 2 36 40 ntrclsfv φ s 𝒫 B K K s = B I B K s
42 simpr φ s 𝒫 B s 𝒫 B
43 1 2 36 42 ntrclsfv φ s 𝒫 B K s = B I B s
44 43 difeq2d φ s 𝒫 B B K s = B B I B s
45 dfss4 I B s B B B I B s = I B s
46 31 45 sylib φ B B I B s = I B s
47 46 adantr φ s 𝒫 B B B I B s = I B s
48 44 47 eqtrd φ s 𝒫 B B K s = I B s
49 48 fveq2d φ s 𝒫 B I B K s = I I B s
50 49 difeq2d φ s 𝒫 B B I B K s = B I I B s
51 41 50 eqtrd φ s 𝒫 B K K s = B I I B s
52 51 43 eqeq12d φ s 𝒫 B K K s = K s B I I B s = B I B s
53 34 52 bitr4d φ s 𝒫 B I I B s = I B s K K s = K s
54 53 3adant3 φ s 𝒫 B t = B s I I B s = I B s K K s = K s
55 24 54 bitrd φ s 𝒫 B t = B s I I t = I t K K s = K s
56 9 20 55 ralxfrd2 φ t 𝒫 B I I t = I t s 𝒫 B K K s = K s
57 7 56 syl5bb φ s 𝒫 B I I s = I s s 𝒫 B K K s = K s