| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oexpreposd.n |  | 
						
							| 2 |  | oexpreposd.m |  | 
						
							| 3 |  | oexpreposd.1 |  | 
						
							| 4 | 1 | adantr |  | 
						
							| 5 | 2 | nnzd |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | expgt0 |  | 
						
							| 9 | 4 6 7 8 | syl3anc |  | 
						
							| 10 | 9 | ex |  | 
						
							| 11 |  | 0red |  | 
						
							| 12 | 11 1 | lttrid |  | 
						
							| 13 | 12 | notbid |  | 
						
							| 14 |  | notnotr |  | 
						
							| 15 |  | 0re |  | 
						
							| 16 | 15 | ltnri |  | 
						
							| 17 | 2 | 0expd |  | 
						
							| 18 | 17 | breq2d |  | 
						
							| 19 | 16 18 | mtbiri |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 | eqcomd |  | 
						
							| 23 | 22 | oveq1d |  | 
						
							| 24 | 23 | breq2d |  | 
						
							| 25 | 20 24 | mtbird |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 1 | renegcld |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 5 | adantr |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | expgt0 |  | 
						
							| 32 | 28 29 30 31 | syl3anc |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 1 | recnd |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 |  | zq |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 |  | qden1elz |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 35 39 | mpbird |  | 
						
							| 41 | 40 | oveq2d |  | 
						
							| 42 |  | qmuldeneqnum |  | 
						
							| 43 | 37 42 | syl |  | 
						
							| 44 | 35 | zcnd |  | 
						
							| 45 | 44 | mulridd |  | 
						
							| 46 | 41 43 45 | 3eqtr3rd |  | 
						
							| 47 | 2 | nnred |  | 
						
							| 48 |  | 2re |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 2 | nngt0d |  | 
						
							| 51 |  | 2pos |  | 
						
							| 52 | 51 | a1i |  | 
						
							| 53 | 47 49 50 52 | divgt0d |  | 
						
							| 54 |  | qgt0numnn |  | 
						
							| 55 | 36 53 54 | syl2anr |  | 
						
							| 56 | 46 55 | eqeltrd |  | 
						
							| 57 | 3 56 | mtand |  | 
						
							| 58 |  | evend2 |  | 
						
							| 59 | 5 58 | syl |  | 
						
							| 60 | 57 59 | mtbird |  | 
						
							| 61 |  | oexpneg |  | 
						
							| 62 | 34 2 60 61 | syl3anc |  | 
						
							| 63 | 62 | breq2d |  | 
						
							| 64 | 63 | biimpd |  | 
						
							| 65 | 2 | nnnn0d |  | 
						
							| 66 | 1 65 | reexpcld |  | 
						
							| 67 | 66 | renegcld |  | 
						
							| 68 | 11 67 | lttrid |  | 
						
							| 69 |  | pm2.46 |  | 
						
							| 70 | 68 69 | biimtrdi |  | 
						
							| 71 | 33 64 70 | 3syld |  | 
						
							| 72 | 1 | lt0neg1d |  | 
						
							| 73 | 66 | lt0neg2d |  | 
						
							| 74 | 73 | notbid |  | 
						
							| 75 | 71 72 74 | 3imtr4d |  | 
						
							| 76 | 26 75 | jaod |  | 
						
							| 77 | 14 76 | syl5 |  | 
						
							| 78 | 13 77 | sylbid |  | 
						
							| 79 | 10 78 | impcon4bid |  |