Metamath Proof Explorer


Theorem pclogsum

Description: The logarithmic analogue of pcprod . The sum of the logarithms of the primes dividing A multiplied by their powers yields the logarithm of A . (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Assertion pclogsum Ap1AppCntAlogp=logA

Proof

Step Hyp Ref Expression
1 elin p1Ap1Ap
2 1 baib p1Ap1Ap
3 2 ifbid p1Aifp1AlogpppCntA0=ifplogpppCntA0
4 fvif logifppppCntA1=ifplogpppCntAlog1
5 log1 log1=0
6 ifeq2 log1=0ifplogpppCntAlog1=ifplogpppCntA0
7 5 6 ax-mp ifplogpppCntAlog1=ifplogpppCntA0
8 4 7 eqtri logifppppCntA1=ifplogpppCntA0
9 3 8 eqtr4di p1Aifp1AlogpppCntA0=logifppppCntA1
10 9 sumeq2i p=1Aifp1AlogpppCntA0=p=1AlogifppppCntA1
11 inss1 1A1A
12 simpr Ap1Ap1A
13 12 elin1d Ap1Ap1A
14 elfznn p1Ap
15 13 14 syl Ap1Ap
16 12 elin2d Ap1Ap
17 simpl Ap1AA
18 16 17 pccld Ap1AppCntA0
19 15 18 nnexpcld Ap1ApppCntA
20 19 nnrpd Ap1ApppCntA+
21 20 relogcld Ap1AlogpppCntA
22 21 recnd Ap1AlogpppCntA
23 22 ralrimiva Ap1AlogpppCntA
24 fzfi 1AFin
25 24 olci 1A11AFin
26 sumss2 1A1Ap1AlogpppCntA1A11AFinp1AlogpppCntA=p=1Aifp1AlogpppCntA0
27 25 26 mpan2 1A1Ap1AlogpppCntAp1AlogpppCntA=p=1Aifp1AlogpppCntA0
28 11 23 27 sylancr Ap1AlogpppCntA=p=1Aifp1AlogpppCntA0
29 15 nnrpd Ap1Ap+
30 18 nn0zd Ap1AppCntA
31 relogexp p+ppCntAlogpppCntA=ppCntAlogp
32 29 30 31 syl2anc Ap1AlogpppCntA=ppCntAlogp
33 32 sumeq2dv Ap1AlogpppCntA=p1AppCntAlogp
34 28 33 eqtr3d Ap=1Aifp1AlogpppCntA0=p1AppCntAlogp
35 14 adantl Ap1Ap
36 eleq1w n=pnp
37 id n=pn=p
38 oveq1 n=pnpCntA=ppCntA
39 37 38 oveq12d n=pnnpCntA=pppCntA
40 36 39 ifbieq1d n=pifnnnpCntA1=ifppppCntA1
41 40 fveq2d n=plogifnnnpCntA1=logifppppCntA1
42 eqid nlogifnnnpCntA1=nlogifnnnpCntA1
43 fvex logifppppCntA1V
44 41 42 43 fvmpt pnlogifnnnpCntA1p=logifppppCntA1
45 35 44 syl Ap1AnlogifnnnpCntA1p=logifppppCntA1
46 elnnuz AA1
47 46 biimpi AA1
48 35 adantr Ap1App
49 simpr Ap1App
50 simpll Ap1ApA
51 49 50 pccld Ap1ApppCntA0
52 48 51 nnexpcld Ap1AppppCntA
53 1nn 1
54 53 a1i Ap1A¬p1
55 52 54 ifclda Ap1AifppppCntA1
56 55 nnrpd Ap1AifppppCntA1+
57 56 relogcld Ap1AlogifppppCntA1
58 57 recnd Ap1AlogifppppCntA1
59 45 47 58 fsumser Ap=1AlogifppppCntA1=seq1+nlogifnnnpCntA1A
60 rpmulcl p+m+pm+
61 60 adantl Ap+m+pm+
62 eqid nifnnnpCntA1=nifnnnpCntA1
63 ovex pppCntAV
64 1ex 1V
65 63 64 ifex ifppppCntA1V
66 40 62 65 fvmpt pnifnnnpCntA1p=ifppppCntA1
67 35 66 syl Ap1AnifnnnpCntA1p=ifppppCntA1
68 67 56 eqeltrd Ap1AnifnnnpCntA1p+
69 relogmul p+m+logpm=logp+logm
70 69 adantl Ap+m+logpm=logp+logm
71 67 fveq2d Ap1AlognifnnnpCntA1p=logifppppCntA1
72 71 45 eqtr4d Ap1AlognifnnnpCntA1p=nlogifnnnpCntA1p
73 61 68 47 70 72 seqhomo Alogseq1×nifnnnpCntA1A=seq1+nlogifnnnpCntA1A
74 62 pcprod Aseq1×nifnnnpCntA1A=A
75 74 fveq2d Alogseq1×nifnnnpCntA1A=logA
76 59 73 75 3eqtr2d Ap=1AlogifppppCntA1=logA
77 10 34 76 3eqtr3a Ap1AppCntAlogp=logA