| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|
| 2 |
|
2prm |
|
| 3 |
|
simpll |
|
| 4 |
|
pcelnn |
|
| 5 |
2 3 4
|
sylancr |
|
| 6 |
1 5
|
mpbird |
|
| 7 |
6
|
nnzd |
|
| 8 |
7
|
peano2zd |
|
| 9 |
|
pcdvds |
|
| 10 |
2 3 9
|
sylancr |
|
| 11 |
|
2nn |
|
| 12 |
6
|
nnnn0d |
|
| 13 |
|
nnexpcl |
|
| 14 |
11 12 13
|
sylancr |
|
| 15 |
|
nndivdvds |
|
| 16 |
3 14 15
|
syl2anc |
|
| 17 |
10 16
|
mpbid |
|
| 18 |
|
pcndvds2 |
|
| 19 |
2 3 18
|
sylancr |
|
| 20 |
|
simpr |
|
| 21 |
|
nncn |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
14
|
nncnd |
|
| 24 |
14
|
nnne0d |
|
| 25 |
22 23 24
|
divcan2d |
|
| 26 |
25
|
oveq2d |
|
| 27 |
25
|
oveq2d |
|
| 28 |
20 26 27
|
3eqtr4d |
|
| 29 |
6 17 19 28
|
perfectlem2 |
|
| 30 |
29
|
simprd |
|
| 31 |
29
|
simpld |
|
| 32 |
30 31
|
eqeltrrd |
|
| 33 |
6
|
nncnd |
|
| 34 |
|
ax-1cn |
|
| 35 |
|
pncan |
|
| 36 |
33 34 35
|
sylancl |
|
| 37 |
36
|
eqcomd |
|
| 38 |
37
|
oveq2d |
|
| 39 |
38 30
|
oveq12d |
|
| 40 |
25 39
|
eqtr3d |
|
| 41 |
|
oveq2 |
|
| 42 |
41
|
oveq1d |
|
| 43 |
42
|
eleq1d |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
oveq2d |
|
| 46 |
45 42
|
oveq12d |
|
| 47 |
46
|
eqeq2d |
|
| 48 |
43 47
|
anbi12d |
|
| 49 |
48
|
rspcev |
|
| 50 |
8 32 40 49
|
syl12anc |
|
| 51 |
50
|
ex |
|
| 52 |
|
perfect1 |
|
| 53 |
|
2cn |
|
| 54 |
|
mersenne |
|
| 55 |
|
prmnn |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
expm1t |
|
| 58 |
53 56 57
|
sylancr |
|
| 59 |
|
nnm1nn0 |
|
| 60 |
56 59
|
syl |
|
| 61 |
|
expcl |
|
| 62 |
53 60 61
|
sylancr |
|
| 63 |
|
mulcom |
|
| 64 |
62 53 63
|
sylancl |
|
| 65 |
58 64
|
eqtrd |
|
| 66 |
65
|
oveq1d |
|
| 67 |
|
2cnd |
|
| 68 |
|
prmnn |
|
| 69 |
68
|
adantl |
|
| 70 |
69
|
nncnd |
|
| 71 |
67 62 70
|
mulassd |
|
| 72 |
52 66 71
|
3eqtrd |
|
| 73 |
|
oveq2 |
|
| 74 |
|
oveq2 |
|
| 75 |
73 74
|
eqeq12d |
|
| 76 |
72 75
|
syl5ibrcom |
|
| 77 |
76
|
impr |
|
| 78 |
77
|
rexlimiva |
|
| 79 |
51 78
|
impbid1 |
|