Metamath Proof Explorer


Theorem perfectlem1

Description: Lemma for perfect . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses perfectlem.1 φA
perfectlem.2 φB
perfectlem.3 φ¬2B
perfectlem.4 φ1σ2AB=22AB
Assertion perfectlem1 φ2A+12A+11B2A+11

Proof

Step Hyp Ref Expression
1 perfectlem.1 φA
2 perfectlem.2 φB
3 perfectlem.3 φ¬2B
4 perfectlem.4 φ1σ2AB=22AB
5 2nn 2
6 1 nnnn0d φA0
7 peano2nn0 A0A+10
8 6 7 syl φA+10
9 nnexpcl 2A+102A+1
10 5 8 9 sylancr φ2A+1
11 2re 2
12 1 peano2nnd φA+1
13 1lt2 1<2
14 13 a1i φ1<2
15 expgt1 2A+11<21<2A+1
16 11 12 14 15 mp3an2i φ1<2A+1
17 1nn 1
18 nnsub 12A+11<2A+12A+11
19 17 10 18 sylancr φ1<2A+12A+11
20 16 19 mpbid φ2A+11
21 10 nnzd φ2A+1
22 peano2zm 2A+12A+11
23 21 22 syl φ2A+11
24 1nn0 10
25 sgmnncl 10B1σB
26 24 2 25 sylancr φ1σB
27 26 nnzd φ1σB
28 dvdsmul1 2A+111σB2A+112A+111σB
29 23 27 28 syl2anc φ2A+112A+111σB
30 2cn 2
31 expp1 2A02A+1=2A2
32 30 6 31 sylancr φ2A+1=2A2
33 nnexpcl 2A02A
34 5 6 33 sylancr φ2A
35 34 nncnd φ2A
36 mulcom 2A22A2=22A
37 35 30 36 sylancl φ2A2=22A
38 32 37 eqtrd φ2A+1=22A
39 38 oveq1d φ2A+1B=22AB
40 30 a1i φ2
41 2 nncnd φB
42 40 35 41 mulassd φ22AB=22AB
43 ax-1cn 1
44 43 a1i φ1
45 2prm 2
46 2 nnzd φB
47 coprm 2B¬2B2gcdB=1
48 45 46 47 sylancr φ¬2B2gcdB=1
49 3 48 mpbid φ2gcdB=1
50 2z 2
51 rpexp1i 2BA02gcdB=12AgcdB=1
52 50 46 6 51 mp3an2i φ2gcdB=12AgcdB=1
53 49 52 mpd φ2AgcdB=1
54 sgmmul 12AB2AgcdB=11σ2AB=1σ2A1σB
55 44 34 2 53 54 syl13anc φ1σ2AB=1σ2A1σB
56 1 nncnd φA
57 pncan A1A+1-1=A
58 56 43 57 sylancl φA+1-1=A
59 58 oveq2d φ2A+1-1=2A
60 59 oveq2d φ1σ2A+1-1=1σ2A
61 1sgm2ppw A+11σ2A+1-1=2A+11
62 12 61 syl φ1σ2A+1-1=2A+11
63 60 62 eqtr3d φ1σ2A=2A+11
64 63 oveq1d φ1σ2A1σB=2A+111σB
65 55 4 64 3eqtr3d φ22AB=2A+111σB
66 39 42 65 3eqtrd φ2A+1B=2A+111σB
67 29 66 breqtrrd φ2A+112A+1B
68 23 21 gcdcomd φ2A+11gcd2A+1=2A+1gcd2A+11
69 iddvdsexp 2A+122A+1
70 50 12 69 sylancr φ22A+1
71 n2dvds1 ¬21
72 50 a1i φ2
73 1zzd φ1
74 72 21 73 3jca φ22A+11
75 dvdssub2 22A+1122A+1122A+121
76 74 75 sylan φ22A+1122A+121
77 71 76 mtbiri φ22A+11¬22A+1
78 77 ex φ22A+11¬22A+1
79 70 78 mt2d φ¬22A+11
80 coprm 22A+11¬22A+112gcd2A+11=1
81 45 23 80 sylancr φ¬22A+112gcd2A+11=1
82 79 81 mpbid φ2gcd2A+11=1
83 rpexp1i 22A+11A+102gcd2A+11=12A+1gcd2A+11=1
84 50 23 8 83 mp3an2i φ2gcd2A+11=12A+1gcd2A+11=1
85 82 84 mpd φ2A+1gcd2A+11=1
86 68 85 eqtrd φ2A+11gcd2A+1=1
87 coprmdvds 2A+112A+1B2A+112A+1B2A+11gcd2A+1=12A+11B
88 23 21 46 87 syl3anc φ2A+112A+1B2A+11gcd2A+1=12A+11B
89 67 86 88 mp2and φ2A+11B
90 nndivdvds B2A+112A+11BB2A+11
91 2 20 90 syl2anc φ2A+11BB2A+11
92 89 91 mpbid φB2A+11
93 10 20 92 3jca φ2A+12A+11B2A+11