Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Perfect Number Theorem
perfectlem1
Next ⟩
perfectlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
perfectlem1
Description:
Lemma for
perfect
.
(Contributed by
Mario Carneiro
, 7-Jun-2016)
Ref
Expression
Hypotheses
perfectlem.1
⊢
φ
→
A
∈
ℕ
perfectlem.2
⊢
φ
→
B
∈
ℕ
perfectlem.3
⊢
φ
→
¬
2
∥
B
perfectlem.4
⊢
φ
→
1
σ
2
A
B
=
2
2
A
B
Assertion
perfectlem1
⊢
φ
→
2
A
+
1
∈
ℕ
∧
2
A
+
1
−
1
∈
ℕ
∧
B
2
A
+
1
−
1
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
perfectlem.1
⊢
φ
→
A
∈
ℕ
2
perfectlem.2
⊢
φ
→
B
∈
ℕ
3
perfectlem.3
⊢
φ
→
¬
2
∥
B
4
perfectlem.4
⊢
φ
→
1
σ
2
A
B
=
2
2
A
B
5
2nn
⊢
2
∈
ℕ
6
1
nnnn0d
⊢
φ
→
A
∈
ℕ
0
7
peano2nn0
⊢
A
∈
ℕ
0
→
A
+
1
∈
ℕ
0
8
6
7
syl
⊢
φ
→
A
+
1
∈
ℕ
0
9
nnexpcl
⊢
2
∈
ℕ
∧
A
+
1
∈
ℕ
0
→
2
A
+
1
∈
ℕ
10
5
8
9
sylancr
⊢
φ
→
2
A
+
1
∈
ℕ
11
2re
⊢
2
∈
ℝ
12
1
peano2nnd
⊢
φ
→
A
+
1
∈
ℕ
13
1lt2
⊢
1
<
2
14
13
a1i
⊢
φ
→
1
<
2
15
expgt1
⊢
2
∈
ℝ
∧
A
+
1
∈
ℕ
∧
1
<
2
→
1
<
2
A
+
1
16
11
12
14
15
mp3an2i
⊢
φ
→
1
<
2
A
+
1
17
1nn
⊢
1
∈
ℕ
18
nnsub
⊢
1
∈
ℕ
∧
2
A
+
1
∈
ℕ
→
1
<
2
A
+
1
↔
2
A
+
1
−
1
∈
ℕ
19
17
10
18
sylancr
⊢
φ
→
1
<
2
A
+
1
↔
2
A
+
1
−
1
∈
ℕ
20
16
19
mpbid
⊢
φ
→
2
A
+
1
−
1
∈
ℕ
21
10
nnzd
⊢
φ
→
2
A
+
1
∈
ℤ
22
peano2zm
⊢
2
A
+
1
∈
ℤ
→
2
A
+
1
−
1
∈
ℤ
23
21
22
syl
⊢
φ
→
2
A
+
1
−
1
∈
ℤ
24
1nn0
⊢
1
∈
ℕ
0
25
sgmnncl
⊢
1
∈
ℕ
0
∧
B
∈
ℕ
→
1
σ
B
∈
ℕ
26
24
2
25
sylancr
⊢
φ
→
1
σ
B
∈
ℕ
27
26
nnzd
⊢
φ
→
1
σ
B
∈
ℤ
28
dvdsmul1
⊢
2
A
+
1
−
1
∈
ℤ
∧
1
σ
B
∈
ℤ
→
2
A
+
1
−
1
∥
2
A
+
1
−
1
1
σ
B
29
23
27
28
syl2anc
⊢
φ
→
2
A
+
1
−
1
∥
2
A
+
1
−
1
1
σ
B
30
2cn
⊢
2
∈
ℂ
31
expp1
⊢
2
∈
ℂ
∧
A
∈
ℕ
0
→
2
A
+
1
=
2
A
⋅
2
32
30
6
31
sylancr
⊢
φ
→
2
A
+
1
=
2
A
⋅
2
33
nnexpcl
⊢
2
∈
ℕ
∧
A
∈
ℕ
0
→
2
A
∈
ℕ
34
5
6
33
sylancr
⊢
φ
→
2
A
∈
ℕ
35
34
nncnd
⊢
φ
→
2
A
∈
ℂ
36
mulcom
⊢
2
A
∈
ℂ
∧
2
∈
ℂ
→
2
A
⋅
2
=
2
2
A
37
35
30
36
sylancl
⊢
φ
→
2
A
⋅
2
=
2
2
A
38
32
37
eqtrd
⊢
φ
→
2
A
+
1
=
2
2
A
39
38
oveq1d
⊢
φ
→
2
A
+
1
B
=
2
2
A
B
40
30
a1i
⊢
φ
→
2
∈
ℂ
41
2
nncnd
⊢
φ
→
B
∈
ℂ
42
40
35
41
mulassd
⊢
φ
→
2
2
A
B
=
2
2
A
B
43
ax-1cn
⊢
1
∈
ℂ
44
43
a1i
⊢
φ
→
1
∈
ℂ
45
2prm
⊢
2
∈
ℙ
46
2
nnzd
⊢
φ
→
B
∈
ℤ
47
coprm
⊢
2
∈
ℙ
∧
B
∈
ℤ
→
¬
2
∥
B
↔
2
gcd
B
=
1
48
45
46
47
sylancr
⊢
φ
→
¬
2
∥
B
↔
2
gcd
B
=
1
49
3
48
mpbid
⊢
φ
→
2
gcd
B
=
1
50
2z
⊢
2
∈
ℤ
51
rpexp1i
⊢
2
∈
ℤ
∧
B
∈
ℤ
∧
A
∈
ℕ
0
→
2
gcd
B
=
1
→
2
A
gcd
B
=
1
52
50
46
6
51
mp3an2i
⊢
φ
→
2
gcd
B
=
1
→
2
A
gcd
B
=
1
53
49
52
mpd
⊢
φ
→
2
A
gcd
B
=
1
54
sgmmul
⊢
1
∈
ℂ
∧
2
A
∈
ℕ
∧
B
∈
ℕ
∧
2
A
gcd
B
=
1
→
1
σ
2
A
B
=
1
σ
2
A
1
σ
B
55
44
34
2
53
54
syl13anc
⊢
φ
→
1
σ
2
A
B
=
1
σ
2
A
1
σ
B
56
1
nncnd
⊢
φ
→
A
∈
ℂ
57
pncan
⊢
A
∈
ℂ
∧
1
∈
ℂ
→
A
+
1
-
1
=
A
58
56
43
57
sylancl
⊢
φ
→
A
+
1
-
1
=
A
59
58
oveq2d
⊢
φ
→
2
A
+
1
-
1
=
2
A
60
59
oveq2d
⊢
φ
→
1
σ
2
A
+
1
-
1
=
1
σ
2
A
61
1sgm2ppw
⊢
A
+
1
∈
ℕ
→
1
σ
2
A
+
1
-
1
=
2
A
+
1
−
1
62
12
61
syl
⊢
φ
→
1
σ
2
A
+
1
-
1
=
2
A
+
1
−
1
63
60
62
eqtr3d
⊢
φ
→
1
σ
2
A
=
2
A
+
1
−
1
64
63
oveq1d
⊢
φ
→
1
σ
2
A
1
σ
B
=
2
A
+
1
−
1
1
σ
B
65
55
4
64
3eqtr3d
⊢
φ
→
2
2
A
B
=
2
A
+
1
−
1
1
σ
B
66
39
42
65
3eqtrd
⊢
φ
→
2
A
+
1
B
=
2
A
+
1
−
1
1
σ
B
67
29
66
breqtrrd
⊢
φ
→
2
A
+
1
−
1
∥
2
A
+
1
B
68
23
21
gcdcomd
⊢
φ
→
2
A
+
1
−
1
gcd
2
A
+
1
=
2
A
+
1
gcd
2
A
+
1
−
1
69
iddvdsexp
⊢
2
∈
ℤ
∧
A
+
1
∈
ℕ
→
2
∥
2
A
+
1
70
50
12
69
sylancr
⊢
φ
→
2
∥
2
A
+
1
71
n2dvds1
⊢
¬
2
∥
1
72
50
a1i
⊢
φ
→
2
∈
ℤ
73
1zzd
⊢
φ
→
1
∈
ℤ
74
72
21
73
3jca
⊢
φ
→
2
∈
ℤ
∧
2
A
+
1
∈
ℤ
∧
1
∈
ℤ
75
dvdssub2
⊢
2
∈
ℤ
∧
2
A
+
1
∈
ℤ
∧
1
∈
ℤ
∧
2
∥
2
A
+
1
−
1
→
2
∥
2
A
+
1
↔
2
∥
1
76
74
75
sylan
⊢
φ
∧
2
∥
2
A
+
1
−
1
→
2
∥
2
A
+
1
↔
2
∥
1
77
71
76
mtbiri
⊢
φ
∧
2
∥
2
A
+
1
−
1
→
¬
2
∥
2
A
+
1
78
77
ex
⊢
φ
→
2
∥
2
A
+
1
−
1
→
¬
2
∥
2
A
+
1
79
70
78
mt2d
⊢
φ
→
¬
2
∥
2
A
+
1
−
1
80
coprm
⊢
2
∈
ℙ
∧
2
A
+
1
−
1
∈
ℤ
→
¬
2
∥
2
A
+
1
−
1
↔
2
gcd
2
A
+
1
−
1
=
1
81
45
23
80
sylancr
⊢
φ
→
¬
2
∥
2
A
+
1
−
1
↔
2
gcd
2
A
+
1
−
1
=
1
82
79
81
mpbid
⊢
φ
→
2
gcd
2
A
+
1
−
1
=
1
83
rpexp1i
⊢
2
∈
ℤ
∧
2
A
+
1
−
1
∈
ℤ
∧
A
+
1
∈
ℕ
0
→
2
gcd
2
A
+
1
−
1
=
1
→
2
A
+
1
gcd
2
A
+
1
−
1
=
1
84
50
23
8
83
mp3an2i
⊢
φ
→
2
gcd
2
A
+
1
−
1
=
1
→
2
A
+
1
gcd
2
A
+
1
−
1
=
1
85
82
84
mpd
⊢
φ
→
2
A
+
1
gcd
2
A
+
1
−
1
=
1
86
68
85
eqtrd
⊢
φ
→
2
A
+
1
−
1
gcd
2
A
+
1
=
1
87
coprmdvds
⊢
2
A
+
1
−
1
∈
ℤ
∧
2
A
+
1
∈
ℤ
∧
B
∈
ℤ
→
2
A
+
1
−
1
∥
2
A
+
1
B
∧
2
A
+
1
−
1
gcd
2
A
+
1
=
1
→
2
A
+
1
−
1
∥
B
88
23
21
46
87
syl3anc
⊢
φ
→
2
A
+
1
−
1
∥
2
A
+
1
B
∧
2
A
+
1
−
1
gcd
2
A
+
1
=
1
→
2
A
+
1
−
1
∥
B
89
67
86
88
mp2and
⊢
φ
→
2
A
+
1
−
1
∥
B
90
nndivdvds
⊢
B
∈
ℕ
∧
2
A
+
1
−
1
∈
ℕ
→
2
A
+
1
−
1
∥
B
↔
B
2
A
+
1
−
1
∈
ℕ
91
2
20
90
syl2anc
⊢
φ
→
2
A
+
1
−
1
∥
B
↔
B
2
A
+
1
−
1
∈
ℕ
92
89
91
mpbid
⊢
φ
→
B
2
A
+
1
−
1
∈
ℕ
93
10
20
92
3jca
⊢
φ
→
2
A
+
1
∈
ℕ
∧
2
A
+
1
−
1
∈
ℕ
∧
B
2
A
+
1
−
1
∈
ℕ