Metamath Proof Explorer


Theorem pgnbgreunbgr

Description: In a Petersen graph, two different neighbors of a vertex have exactly one common neighbor, which is the vertex itself. (Contributed by AV, 9-Nov-2025)

Ref Expression
Hypotheses pgnbgreunbgr.g No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
pgnbgreunbgr.v V = Vtx G
pgnbgreunbgr.e E = Edg G
pgnbgreunbgr.n N = G NeighbVtx X
Assertion pgnbgreunbgr K N L N K L ∃! x V K x x L E

Proof

Step Hyp Ref Expression
1 pgnbgreunbgr.g Could not format G = ( 5 gPetersenGr 2 ) : No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
2 pgnbgreunbgr.v V = Vtx G
3 pgnbgreunbgr.e E = Edg G
4 pgnbgreunbgr.n N = G NeighbVtx X
5 preq2 x = X K x = K X
6 preq1 x = X x L = X L
7 5 6 preq12d x = X K x x L = K X X L
8 7 sseq1d x = X K x x L E K X X L E
9 eqeq1 x = X x = y X = y
10 9 imbi2d x = X K y y L E x = y K y y L E X = y
11 10 ralbidv x = X y V K y y L E x = y y V K y y L E X = y
12 8 11 anbi12d x = X K x x L E y V K y y L E x = y K X X L E y V K y y L E X = y
13 4 eleq2i K N K G NeighbVtx X
14 13 biimpi K N K G NeighbVtx X
15 14 3ad2ant1 K N L N K L K G NeighbVtx X
16 pgjsgr Could not format ( 5 gPetersenGr 2 ) e. USGraph : No typesetting found for |- ( 5 gPetersenGr 2 ) e. USGraph with typecode |-
17 1 16 eqeltri G USGraph
18 3 nbusgreledg G USGraph K G NeighbVtx X K X E
19 17 18 ax-mp K G NeighbVtx X K X E
20 15 19 sylib K N L N K L K X E
21 usgrumgr G USGraph G UMGraph
22 17 21 ax-mp G UMGraph
23 20 22 jctil K N L N K L G UMGraph K X E
24 2 3 umgrpredgv G UMGraph K X E K V X V
25 simpr K V X V X V
26 23 24 25 3syl K N L N K L X V
27 4 eleq2i L N L G NeighbVtx X
28 13 27 anbi12i K N L N K G NeighbVtx X L G NeighbVtx X
29 3 nbusgreledg G USGraph L G NeighbVtx X L X E
30 prcom L X = X L
31 30 eleq1i L X E X L E
32 29 31 bitrdi G USGraph L G NeighbVtx X X L E
33 18 32 anbi12d G USGraph K G NeighbVtx X L G NeighbVtx X K X E X L E
34 17 33 ax-mp K G NeighbVtx X L G NeighbVtx X K X E X L E
35 28 34 sylbb K N L N K X E X L E
36 35 3adant3 K N L N K L K X E X L E
37 prssi K X E X L E K X X L E
38 36 37 syl K N L N K L K X X L E
39 prex K y V
40 prex y L V
41 39 40 prss K y E y L E K y y L E
42 5eluz3 5 3
43 pglem 2 1 ..^ 5 2
44 eqid 0 ..^ 5 = 0 ..^ 5
45 eqid 1 ..^ 5 2 = 1 ..^ 5 2
46 44 45 1 2 gpgvtxel 5 3 2 1 ..^ 5 2 y V a 0 1 b 0 ..^ 5 y = a b
47 42 43 46 mp2an y V a 0 1 b 0 ..^ 5 y = a b
48 47 biimpi y V a 0 1 b 0 ..^ 5 y = a b
49 48 adantl K N L N K L y V a 0 1 b 0 ..^ 5 y = a b
50 opeq1 a = 0 a b = 0 b
51 50 eqeq2d a = 0 y = a b y = 0 b
52 51 adantr a = 0 K N L N K L y V b 0 ..^ 5 y = a b y = 0 b
53 1 2 3 4 pgnbgreunbgrlem3 K N L N K L b 0 ..^ 5 K 0 b E 0 b L E X = 0 b
54 53 adantlr K N L N K L y V b 0 ..^ 5 K 0 b E 0 b L E X = 0 b
55 preq2 y = 0 b K y = K 0 b
56 55 eleq1d y = 0 b K y E K 0 b E
57 preq1 y = 0 b y L = 0 b L
58 57 eleq1d y = 0 b y L E 0 b L E
59 56 58 anbi12d y = 0 b K y E y L E K 0 b E 0 b L E
60 eqeq2 y = 0 b X = y X = 0 b
61 59 60 imbi12d y = 0 b K y E y L E X = y K 0 b E 0 b L E X = 0 b
62 54 61 syl5ibrcom K N L N K L y V b 0 ..^ 5 y = 0 b K y E y L E X = y
63 62 adantl a = 0 K N L N K L y V b 0 ..^ 5 y = 0 b K y E y L E X = y
64 52 63 sylbid a = 0 K N L N K L y V b 0 ..^ 5 y = a b K y E y L E X = y
65 64 ex a = 0 K N L N K L y V b 0 ..^ 5 y = a b K y E y L E X = y
66 1 2 3 4 pgnbgreunbgrlem6 K N L N K L b 0 ..^ 5 K 1 b E 1 b L E X = 1 b
67 66 adantlr K N L N K L y V b 0 ..^ 5 K 1 b E 1 b L E X = 1 b
68 preq2 y = 1 b K y = K 1 b
69 68 eleq1d y = 1 b K y E K 1 b E
70 preq1 y = 1 b y L = 1 b L
71 70 eleq1d y = 1 b y L E 1 b L E
72 69 71 anbi12d y = 1 b K y E y L E K 1 b E 1 b L E
73 eqeq2 y = 1 b X = y X = 1 b
74 72 73 imbi12d y = 1 b K y E y L E X = y K 1 b E 1 b L E X = 1 b
75 67 74 syl5ibrcom K N L N K L y V b 0 ..^ 5 y = 1 b K y E y L E X = y
76 opeq1 a = 1 a b = 1 b
77 76 eqeq2d a = 1 y = a b y = 1 b
78 77 imbi1d a = 1 y = a b K y E y L E X = y y = 1 b K y E y L E X = y
79 75 78 imbitrrid a = 1 K N L N K L y V b 0 ..^ 5 y = a b K y E y L E X = y
80 65 79 jaoi a = 0 a = 1 K N L N K L y V b 0 ..^ 5 y = a b K y E y L E X = y
81 80 expd a = 0 a = 1 K N L N K L y V b 0 ..^ 5 y = a b K y E y L E X = y
82 elpri a 0 1 a = 0 a = 1
83 81 82 syl11 K N L N K L y V a 0 1 b 0 ..^ 5 y = a b K y E y L E X = y
84 83 impd K N L N K L y V a 0 1 b 0 ..^ 5 y = a b K y E y L E X = y
85 84 rexlimdvv K N L N K L y V a 0 1 b 0 ..^ 5 y = a b K y E y L E X = y
86 49 85 mpd K N L N K L y V K y E y L E X = y
87 41 86 biimtrrid K N L N K L y V K y y L E X = y
88 87 ralrimiva K N L N K L y V K y y L E X = y
89 38 88 jca K N L N K L K X X L E y V K y y L E X = y
90 12 26 89 rspcedvdw K N L N K L x V K x x L E y V K y y L E x = y
91 preq2 x = y K x = K y
92 preq1 x = y x L = y L
93 91 92 preq12d x = y K x x L = K y y L
94 93 sseq1d x = y K x x L E K y y L E
95 94 reu8 ∃! x V K x x L E x V K x x L E y V K y y L E x = y
96 90 95 sylibr K N L N K L ∃! x V K x x L E