Metamath Proof Explorer


Theorem ply1divmo

Description: Uniqueness of a quotient in a polynomial division. For polynomials F , G such that G =/= 0 and the leading coefficient of G is not a zero divisor, there is at most one polynomial q which satisfies F = ( G x. q ) + r where the degree of r is less than the degree of G . (Contributed by Stefan O'Rear, 26-Mar-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Hypotheses ply1divalg.p P=Poly1R
ply1divalg.d D=deg1R
ply1divalg.b B=BaseP
ply1divalg.m -˙=-P
ply1divalg.z 0˙=0P
ply1divalg.t ˙=P
ply1divalg.r1 φRRing
ply1divalg.f φFB
ply1divalg.g1 φGB
ply1divalg.g2 φG0˙
ply1divmo.g3 φcoe1GDGE
ply1divmo.e E=RLRegR
Assertion ply1divmo φ*qBDF-˙G˙q<DG

Proof

Step Hyp Ref Expression
1 ply1divalg.p P=Poly1R
2 ply1divalg.d D=deg1R
3 ply1divalg.b B=BaseP
4 ply1divalg.m -˙=-P
5 ply1divalg.z 0˙=0P
6 ply1divalg.t ˙=P
7 ply1divalg.r1 φRRing
8 ply1divalg.f φFB
9 ply1divalg.g1 φGB
10 ply1divalg.g2 φG0˙
11 ply1divmo.g3 φcoe1GDGE
12 ply1divmo.e E=RLRegR
13 7 adantr φqBrBRRing
14 1 ply1ring RRingPRing
15 13 14 syl φqBrBPRing
16 ringgrp PRingPGrp
17 15 16 syl φqBrBPGrp
18 8 adantr φqBrBFB
19 9 adantr φqBrBGB
20 simprl φqBrBqB
21 3 6 ringcl PRingGBqBG˙qB
22 15 19 20 21 syl3anc φqBrBG˙qB
23 3 4 grpsubcl PGrpFBG˙qBF-˙G˙qB
24 17 18 22 23 syl3anc φqBrBF-˙G˙qB
25 simprr φqBrBrB
26 3 6 ringcl PRingGBrBG˙rB
27 15 19 25 26 syl3anc φqBrBG˙rB
28 3 4 grpsubcl PGrpFBG˙rBF-˙G˙rB
29 17 18 27 28 syl3anc φqBrBF-˙G˙rB
30 3 4 grpsubcl PGrpF-˙G˙qBF-˙G˙rBF-˙G˙q-˙F-˙G˙rB
31 17 24 29 30 syl3anc φqBrBF-˙G˙q-˙F-˙G˙rB
32 2 1 3 deg1xrcl F-˙G˙q-˙F-˙G˙rBDF-˙G˙q-˙F-˙G˙r*
33 31 32 syl φqBrBDF-˙G˙q-˙F-˙G˙r*
34 2 1 3 deg1xrcl F-˙G˙rBDF-˙G˙r*
35 29 34 syl φqBrBDF-˙G˙r*
36 2 1 3 deg1xrcl F-˙G˙qBDF-˙G˙q*
37 24 36 syl φqBrBDF-˙G˙q*
38 35 37 ifcld φqBrBifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q*
39 2 1 3 deg1xrcl GBDG*
40 19 39 syl φqBrBDG*
41 33 38 40 3jca φqBrBDF-˙G˙q-˙F-˙G˙r*ifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q*DG*
42 41 adantr φqBrBDF-˙G˙q<DGDF-˙G˙r<DGDF-˙G˙q-˙F-˙G˙r*ifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q*DG*
43 1 2 13 3 4 24 29 deg1suble φqBrBDF-˙G˙q-˙F-˙G˙rifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q
44 43 adantr φqBrBDF-˙G˙q<DGDF-˙G˙r<DGDF-˙G˙q-˙F-˙G˙rifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q
45 xrmaxlt DF-˙G˙q*DF-˙G˙r*DG*ifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q<DGDF-˙G˙q<DGDF-˙G˙r<DG
46 37 35 40 45 syl3anc φqBrBifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q<DGDF-˙G˙q<DGDF-˙G˙r<DG
47 46 biimpar φqBrBDF-˙G˙q<DGDF-˙G˙r<DGifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q<DG
48 44 47 jca φqBrBDF-˙G˙q<DGDF-˙G˙r<DGDF-˙G˙q-˙F-˙G˙rifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙qifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q<DG
49 xrlelttr DF-˙G˙q-˙F-˙G˙r*ifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q*DG*DF-˙G˙q-˙F-˙G˙rifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙qifDF-˙G˙qDF-˙G˙rDF-˙G˙rDF-˙G˙q<DGDF-˙G˙q-˙F-˙G˙r<DG
50 42 48 49 sylc φqBrBDF-˙G˙q<DGDF-˙G˙r<DGDF-˙G˙q-˙F-˙G˙r<DG
51 50 ex φqBrBDF-˙G˙q<DGDF-˙G˙r<DGDF-˙G˙q-˙F-˙G˙r<DG
52 2 1 5 3 deg1nn0cl RRingGBG0˙DG0
53 7 9 10 52 syl3anc φDG0
54 53 ad2antrr φqBrBqrDG0
55 54 nn0red φqBrBqrDG
56 7 ad2antrr φqBrBqrRRing
57 3 4 grpsubcl PGrprBqBr-˙qB
58 17 25 20 57 syl3anc φqBrBr-˙qB
59 58 adantr φqBrBqrr-˙qB
60 3 5 4 grpsubeq0 PGrprBqBr-˙q=0˙r=q
61 17 25 20 60 syl3anc φqBrBr-˙q=0˙r=q
62 equcom r=qq=r
63 61 62 bitrdi φqBrBr-˙q=0˙q=r
64 63 necon3bid φqBrBr-˙q0˙qr
65 64 biimpar φqBrBqrr-˙q0˙
66 2 1 5 3 deg1nn0cl RRingr-˙qBr-˙q0˙Dr-˙q0
67 56 59 65 66 syl3anc φqBrBqrDr-˙q0
68 nn0addge1 DGDr-˙q0DGDG+Dr-˙q
69 55 67 68 syl2anc φqBrBqrDGDG+Dr-˙q
70 9 ad2antrr φqBrBqrGB
71 10 ad2antrr φqBrBqrG0˙
72 11 ad2antrr φqBrBqrcoe1GDGE
73 2 1 12 3 6 5 56 70 71 72 59 65 deg1mul2 φqBrBqrDG˙r-˙q=DG+Dr-˙q
74 69 73 breqtrrd φqBrBqrDGDG˙r-˙q
75 ringabl PRingPAbel
76 15 75 syl φqBrBPAbel
77 3 4 76 18 22 27 ablnnncan1 φqBrBF-˙G˙q-˙F-˙G˙r=G˙r-˙G˙q
78 3 6 4 15 19 25 20 ringsubdi φqBrBG˙r-˙q=G˙r-˙G˙q
79 77 78 eqtr4d φqBrBF-˙G˙q-˙F-˙G˙r=G˙r-˙q
80 79 fveq2d φqBrBDF-˙G˙q-˙F-˙G˙r=DG˙r-˙q
81 80 adantr φqBrBqrDF-˙G˙q-˙F-˙G˙r=DG˙r-˙q
82 74 81 breqtrrd φqBrBqrDGDF-˙G˙q-˙F-˙G˙r
83 40 33 xrlenltd φqBrBDGDF-˙G˙q-˙F-˙G˙r¬DF-˙G˙q-˙F-˙G˙r<DG
84 83 adantr φqBrBqrDGDF-˙G˙q-˙F-˙G˙r¬DF-˙G˙q-˙F-˙G˙r<DG
85 82 84 mpbid φqBrBqr¬DF-˙G˙q-˙F-˙G˙r<DG
86 85 ex φqBrBqr¬DF-˙G˙q-˙F-˙G˙r<DG
87 86 necon4ad φqBrBDF-˙G˙q-˙F-˙G˙r<DGq=r
88 51 87 syld φqBrBDF-˙G˙q<DGDF-˙G˙r<DGq=r
89 88 ralrimivva φqBrBDF-˙G˙q<DGDF-˙G˙r<DGq=r
90 oveq2 q=rG˙q=G˙r
91 90 oveq2d q=rF-˙G˙q=F-˙G˙r
92 91 fveq2d q=rDF-˙G˙q=DF-˙G˙r
93 92 breq1d q=rDF-˙G˙q<DGDF-˙G˙r<DG
94 93 rmo4 *qBDF-˙G˙q<DGqBrBDF-˙G˙q<DGDF-˙G˙r<DGq=r
95 89 94 sylibr φ*qBDF-˙G˙q<DG