Metamath Proof Explorer


Theorem pnt2

Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to x . (Contributed by Mario Carneiro, 1-Jun-2016)

Ref Expression
Assertion pnt2 x+θxx1

Proof

Step Hyp Ref Expression
1 2re 2
2 elicopnf 2x2+∞x2x
3 1 2 ax-mp x2+∞x2x
4 chprpcl x2xψx+
5 3 4 sylbi x2+∞ψx+
6 3 simplbi x2+∞x
7 0red x2+∞0
8 1 a1i x2+∞2
9 2pos 0<2
10 9 a1i x2+∞0<2
11 3 simprbi x2+∞2x
12 7 8 6 10 11 ltletrd x2+∞0<x
13 6 12 elrpd x2+∞x+
14 5 13 rpdivcld x2+∞ψxx+
15 14 adantl x2+∞ψxx+
16 chtrpcl x2xθx+
17 3 16 sylbi x2+∞θx+
18 5 17 rpdivcld x2+∞ψxθx+
19 18 adantl x2+∞ψxθx+
20 13 ssriv 2+∞+
21 20 a1i 2+∞+
22 pnt3 x+ψxx1
23 22 a1i x+ψxx1
24 21 23 rlimres2 x2+∞ψxx1
25 chpchtlim x2+∞ψxθx1
26 25 a1i x2+∞ψxθx1
27 ax-1ne0 10
28 27 a1i 10
29 19 rpne0d x2+∞ψxθx0
30 15 19 24 26 28 29 rlimdiv x2+∞ψxxψxθx11
31 rpre x+x
32 chpcl xψx
33 31 32 syl x+ψx
34 33 recnd x+ψx
35 13 34 syl x2+∞ψx
36 13 rpcnne0d x2+∞xx0
37 5 rpcnne0d x2+∞ψxψx0
38 17 rpcnne0d x2+∞θxθx0
39 divdivdiv ψxxx0ψxψx0θxθx0ψxxψxθx=ψxθxxψx
40 35 36 37 38 39 syl22anc x2+∞ψxxψxθx=ψxθxxψx
41 6 recnd x2+∞x
42 41 35 mulcomd x2+∞xψx=ψxx
43 42 oveq2d x2+∞ψxθxxψx=ψxθxψxx
44 chtcl xθx
45 31 44 syl x+θx
46 45 recnd x+θx
47 13 46 syl x2+∞θx
48 divcan5 θxxx0ψxψx0ψxθxψxx=θxx
49 47 36 37 48 syl3anc x2+∞ψxθxψxx=θxx
50 40 43 49 3eqtrd x2+∞ψxxψxθx=θxx
51 50 mpteq2ia x2+∞ψxxψxθx=x2+∞θxx
52 resmpt 2+∞+x+θxx2+∞=x2+∞θxx
53 20 52 ax-mp x+θxx2+∞=x2+∞θxx
54 51 53 eqtr4i x2+∞ψxxψxθx=x+θxx2+∞
55 1div1e1 11=1
56 30 54 55 3brtr3g x+θxx2+∞1
57 rerpdivcl θxx+θxx
58 45 57 mpancom x+θxx
59 58 adantl x+θxx
60 59 recnd x+θxx
61 60 fmpttd x+θxx:+
62 rpssre +
63 62 a1i +
64 1 a1i 2
65 61 63 64 rlimresb x+θxx1x+θxx2+∞1
66 56 65 mpbird x+θxx1
67 66 mptru x+θxx1