Metamath Proof Explorer


Theorem pnt3

Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to x . (Contributed by Mario Carneiro, 1-Jun-2016)

Ref Expression
Assertion pnt3 x+ψxx1

Proof

Step Hyp Ref Expression
1 eqid a+ψaa=a+ψaa
2 1 pntrmax b+r+a+ψaarrb
3 1 pntibnd c+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauue
4 simpll b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauueb+
5 simplr b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuer+a+ψaarrb
6 fveq2 r=xa+ψaar=a+ψaax
7 id r=xr=x
8 6 7 oveq12d r=xa+ψaarr=a+ψaaxx
9 8 fveq2d r=xa+ψaarr=a+ψaaxx
10 9 breq1d r=xa+ψaarrba+ψaaxxb
11 10 cbvralvw r+a+ψaarrbx+a+ψaaxxb
12 5 11 sylib b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuex+a+ψaaxxb
13 simprll b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuec+
14 simprlr b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuel01
15 eqid b+1=b+1
16 eqid 11b+1l32cb+12=11b+1l32cb+12
17 simprr b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuee01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauue
18 breq2 z=gy<zy<g
19 oveq2 z=g1+lez=1+leg
20 19 breq1d z=g1+lez<ky1+leg<ky
21 18 20 anbi12d z=gy<z1+lez<kyy<g1+leg<ky
22 id z=gz=g
23 22 19 oveq12d z=gz1+lez=g1+leg
24 23 raleqdv z=guz1+leza+ψaauueug1+lega+ψaauue
25 21 24 anbi12d z=gy<z1+lez<kyuz1+leza+ψaauuey<g1+leg<kyug1+lega+ψaauue
26 25 cbvrexvw z+y<z1+lez<kyuz1+leza+ψaauueg+y<g1+leg<kyug1+lega+ψaauue
27 breq1 y=fy<gf<g
28 oveq2 y=fky=kf
29 28 breq2d y=f1+leg<ky1+leg<kf
30 27 29 anbi12d y=fy<g1+leg<kyf<g1+leg<kf
31 30 anbi1d y=fy<g1+leg<kyug1+lega+ψaauuef<g1+leg<kfug1+lega+ψaauue
32 31 rexbidv y=fg+y<g1+leg<kyug1+lega+ψaauueg+f<g1+leg<kfug1+lega+ψaauue
33 26 32 bitrid y=fz+y<z1+lez<kyuz1+leza+ψaauueg+f<g1+leg<kfug1+lega+ψaauue
34 33 cbvralvw yr+∞z+y<z1+lez<kyuz1+leza+ψaauuefr+∞g+f<g1+leg<kfug1+lega+ψaauue
35 oveq1 r=xr+∞=x+∞
36 35 raleqdv r=xfr+∞g+f<g1+leg<kfug1+lega+ψaauuefx+∞g+f<g1+leg<kfug1+lega+ψaauue
37 34 36 bitrid r=xyr+∞z+y<z1+lez<kyuz1+leza+ψaauuefx+∞g+f<g1+leg<kfug1+lega+ψaauue
38 37 ralbidv r=xkece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuekece+∞fx+∞g+f<g1+leg<kfug1+lega+ψaauue
39 38 cbvrexvw r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuex+kece+∞fx+∞g+f<g1+leg<kfug1+lega+ψaauue
40 39 ralbii e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuee01x+kece+∞fx+∞g+f<g1+leg<kfug1+lega+ψaauue
41 17 40 sylib b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuee01x+kece+∞fx+∞g+f<g1+leg<kfug1+lega+ψaauue
42 1 4 12 13 14 15 16 41 pntleml b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuex+ψxx1
43 42 expr b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuex+ψxx1
44 43 rexlimdvva b+r+a+ψaarrbc+l01e01r+kece+∞yr+∞z+y<z1+lez<kyuz1+leza+ψaauuex+ψxx1
45 3 44 mpi b+r+a+ψaarrbx+ψxx1
46 45 rexlimiva b+r+a+ψaarrbx+ψxx1
47 2 46 ax-mp x+ψxx1