Metamath Proof Explorer


Theorem prdstopn

Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdstopn.y Y=S𝑠R
prdstopn.s φSV
prdstopn.i φIW
prdstopn.r φRFnI
prdstopn.o O=TopOpenY
Assertion prdstopn φO=𝑡TopOpenR

Proof

Step Hyp Ref Expression
1 prdstopn.y Y=S𝑠R
2 prdstopn.s φSV
3 prdstopn.i φIW
4 prdstopn.r φRFnI
5 prdstopn.o O=TopOpenY
6 fnex RFnIIWRV
7 4 3 6 syl2anc φRV
8 eqid BaseY=BaseY
9 eqidd φdomR=domR
10 eqid TopSetY=TopSetY
11 1 2 7 8 9 10 prdstset φTopSetY=𝑡TopOpenR
12 topnfn TopOpenFnV
13 dffn2 RFnIR:IV
14 4 13 sylib φR:IV
15 fnfco TopOpenFnVR:IVTopOpenRFnI
16 12 14 15 sylancr φTopOpenRFnI
17 eqid x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy=x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy
18 17 ptval IWTopOpenRFnI𝑡TopOpenR=topGenx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy
19 3 16 18 syl2anc φ𝑡TopOpenR=topGenx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy
20 19 unieqd φ𝑡TopOpenR=topGenx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy
21 fvco2 RFnIyITopOpenRy=TopOpenRy
22 4 21 sylan φyITopOpenRy=TopOpenRy
23 eqid BaseRy=BaseRy
24 eqid TopSetRy=TopSetRy
25 23 24 topnval TopSetRy𝑡BaseRy=TopOpenRy
26 restsspw TopSetRy𝑡BaseRy𝒫BaseRy
27 25 26 eqsstrri TopOpenRy𝒫BaseRy
28 22 27 eqsstrdi φyITopOpenRy𝒫BaseRy
29 28 sseld φyIgyTopOpenRygy𝒫BaseRy
30 fvex gyV
31 30 elpw gy𝒫BaseRygyBaseRy
32 29 31 imbitrdi φyIgyTopOpenRygyBaseRy
33 32 ralimdva φyIgyTopOpenRyyIgyBaseRy
34 simpl2 gFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyyIgyTopOpenRy
35 33 34 impel φgFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyyIgyBaseRy
36 ss2ixp yIgyBaseRyyIgyyIBaseRy
37 35 36 syl φgFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyyIgyyIBaseRy
38 simprr φgFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyx=yIgy
39 1 8 2 3 4 prdsbas2 φBaseY=yIBaseRy
40 39 adantr φgFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyBaseY=yIBaseRy
41 37 38 40 3sstr4d φgFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyxBaseY
42 41 ex φgFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyxBaseY
43 42 exlimdv φggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyxBaseY
44 velpw x𝒫BaseYxBaseY
45 43 44 syl6ibr φggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyx𝒫BaseY
46 45 abssdv φx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy𝒫BaseY
47 fvex BaseYV
48 47 pwex 𝒫BaseYV
49 48 ssex x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy𝒫BaseYx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyV
50 unitg x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyVtopGenx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy=x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy
51 46 49 50 3syl φtopGenx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy=x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy
52 20 51 eqtrd φ𝑡TopOpenR=x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy
53 sspwuni x|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgy𝒫BaseYx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyBaseY
54 46 53 sylib φx|ggFnIyIgyTopOpenRyzFinyIzgy=TopOpenRyx=yIgyBaseY
55 52 54 eqsstrd φ𝑡TopOpenRBaseY
56 sspwuni 𝑡TopOpenR𝒫BaseY𝑡TopOpenRBaseY
57 55 56 sylibr φ𝑡TopOpenR𝒫BaseY
58 11 57 eqsstrd φTopSetY𝒫BaseY
59 8 10 topnid TopSetY𝒫BaseYTopSetY=TopOpenY
60 58 59 syl φTopSetY=TopOpenY
61 60 5 eqtr4di φTopSetY=O
62 61 11 eqtr3d φO=𝑡TopOpenR