Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdstopn.y | |
|
prdstopn.s | |
||
prdstopn.i | |
||
prdstopn.r | |
||
prdstopn.o | |
||
Assertion | prdstopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdstopn.y | |
|
2 | prdstopn.s | |
|
3 | prdstopn.i | |
|
4 | prdstopn.r | |
|
5 | prdstopn.o | |
|
6 | fnex | |
|
7 | 4 3 6 | syl2anc | |
8 | eqid | |
|
9 | eqidd | |
|
10 | eqid | |
|
11 | 1 2 7 8 9 10 | prdstset | |
12 | topnfn | |
|
13 | dffn2 | |
|
14 | 4 13 | sylib | |
15 | fnfco | |
|
16 | 12 14 15 | sylancr | |
17 | eqid | |
|
18 | 17 | ptval | |
19 | 3 16 18 | syl2anc | |
20 | 19 | unieqd | |
21 | fvco2 | |
|
22 | 4 21 | sylan | |
23 | eqid | |
|
24 | eqid | |
|
25 | 23 24 | topnval | |
26 | restsspw | |
|
27 | 25 26 | eqsstrri | |
28 | 22 27 | eqsstrdi | |
29 | 28 | sseld | |
30 | fvex | |
|
31 | 30 | elpw | |
32 | 29 31 | imbitrdi | |
33 | 32 | ralimdva | |
34 | simpl2 | |
|
35 | 33 34 | impel | |
36 | ss2ixp | |
|
37 | 35 36 | syl | |
38 | simprr | |
|
39 | 1 8 2 3 4 | prdsbas2 | |
40 | 39 | adantr | |
41 | 37 38 40 | 3sstr4d | |
42 | 41 | ex | |
43 | 42 | exlimdv | |
44 | velpw | |
|
45 | 43 44 | syl6ibr | |
46 | 45 | abssdv | |
47 | fvex | |
|
48 | 47 | pwex | |
49 | 48 | ssex | |
50 | unitg | |
|
51 | 46 49 50 | 3syl | |
52 | 20 51 | eqtrd | |
53 | sspwuni | |
|
54 | 46 53 | sylib | |
55 | 52 54 | eqsstrd | |
56 | sspwuni | |
|
57 | 55 56 | sylibr | |
58 | 11 57 | eqsstrd | |
59 | 8 10 | topnid | |
60 | 58 59 | syl | |
61 | 60 5 | eqtr4di | |
62 | 61 11 | eqtr3d | |