Metamath Proof Explorer


Theorem prdsval

Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsval.p P=S𝑠R
prdsval.k K=BaseS
prdsval.i φdomR=I
prdsval.b φB=xIBaseRx
prdsval.a φ+˙=fB,gBxIfx+Rxgx
prdsval.t φ×˙=fB,gBxIfxRxgx
prdsval.m φ·˙=fK,gBxIfRxgx
prdsval.j φ,˙=fB,gBSxIfx𝑖Rxgx
prdsval.o φO=𝑡TopOpenR
prdsval.l φ˙=fg|fgBxIfxRxgx
prdsval.d φD=fB,gBsupranxIfxdistRxgx0*<
prdsval.h φH=fB,gBxIfxHomRxgx
prdsval.x φ˙=aB×B,cBd2ndaHc,eHaxIdx1stax2ndaxcompRxcxex
prdsval.s φSW
prdsval.r φRZ
Assertion prdsval φP=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙

Proof

Step Hyp Ref Expression
1 prdsval.p P=S𝑠R
2 prdsval.k K=BaseS
3 prdsval.i φdomR=I
4 prdsval.b φB=xIBaseRx
5 prdsval.a φ+˙=fB,gBxIfx+Rxgx
6 prdsval.t φ×˙=fB,gBxIfxRxgx
7 prdsval.m φ·˙=fK,gBxIfRxgx
8 prdsval.j φ,˙=fB,gBSxIfx𝑖Rxgx
9 prdsval.o φO=𝑡TopOpenR
10 prdsval.l φ˙=fg|fgBxIfxRxgx
11 prdsval.d φD=fB,gBsupranxIfxdistRxgx0*<
12 prdsval.h φH=fB,gBxIfxHomRxgx
13 prdsval.x φ˙=aB×B,cBd2ndaHc,eHaxIdx1stax2ndaxcompRxcxex
14 prdsval.s φSW
15 prdsval.r φRZ
16 df-prds 𝑠=sV,rVxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
17 16 a1i φ𝑠=sV,rVxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
18 vex rV
19 18 rnex ranrV
20 19 uniex ranrV
21 20 rnex ranranrV
22 21 uniex ranranrV
23 baseid Base=SlotBasendx
24 23 strfvss Baserxranrx
25 fvssunirn rxranr
26 rnss rxranrranrxranranr
27 uniss ranrxranranrranrxranranr
28 25 26 27 mp2b ranrxranranr
29 24 28 sstri Baserxranranr
30 29 rgenw xdomrBaserxranranr
31 iunss xdomrBaserxranranrxdomrBaserxranranr
32 30 31 mpbir xdomrBaserxranranr
33 22 32 ssexi xdomrBaserxV
34 ixpssmap2g xdomrBaserxVxdomrBaserxxdomrBaserxdomr
35 33 34 ax-mp xdomrBaserxxdomrBaserxdomr
36 ovex xdomrBaserxdomrV
37 36 ssex xdomrBaserxxdomrBaserxdomrxdomrBaserxV
38 35 37 mp1i φs=Sr=RxdomrBaserxV
39 simpr φs=Sr=Rr=R
40 39 fveq1d φs=Sr=Rrx=Rx
41 40 fveq2d φs=Sr=RBaserx=BaseRx
42 41 ixpeq2dv φs=Sr=RxIBaserx=xIBaseRx
43 39 dmeqd φs=Sr=Rdomr=domR
44 3 ad2antrr φs=Sr=RdomR=I
45 43 44 eqtrd φs=Sr=Rdomr=I
46 45 ixpeq1d φs=Sr=RxdomrBaserx=xIBaserx
47 4 ad2antrr φs=Sr=RB=xIBaseRx
48 42 46 47 3eqtr4d φs=Sr=RxdomrBaserx=B
49 prdsvallem fv,gvxdomrfxHomrxgxV
50 49 a1i φs=Sr=Rv=Bfv,gvxdomrfxHomrxgxV
51 simpr φs=Sr=Rv=Bv=B
52 45 adantr φs=Sr=Rv=Bdomr=I
53 52 ixpeq1d φs=Sr=Rv=BxdomrfxHomrxgx=xIfxHomrxgx
54 40 fveq2d φs=Sr=RHomrx=HomRx
55 54 oveqd φs=Sr=RfxHomrxgx=fxHomRxgx
56 55 ixpeq2dv φs=Sr=RxIfxHomrxgx=xIfxHomRxgx
57 56 adantr φs=Sr=Rv=BxIfxHomrxgx=xIfxHomRxgx
58 53 57 eqtrd φs=Sr=Rv=BxdomrfxHomrxgx=xIfxHomRxgx
59 51 51 58 mpoeq123dv φs=Sr=Rv=Bfv,gvxdomrfxHomrxgx=fB,gBxIfxHomRxgx
60 12 ad3antrrr φs=Sr=Rv=BH=fB,gBxIfxHomRxgx
61 59 60 eqtr4d φs=Sr=Rv=Bfv,gvxdomrfxHomrxgx=H
62 simplr φs=Sr=Rv=Bh=Hv=B
63 62 opeq2d φs=Sr=Rv=Bh=HBasendxv=BasendxB
64 40 fveq2d φs=Sr=R+rx=+Rx
65 64 oveqd φs=Sr=Rfx+rxgx=fx+Rxgx
66 45 65 mpteq12dv φs=Sr=Rxdomrfx+rxgx=xIfx+Rxgx
67 66 adantr φs=Sr=Rv=Bxdomrfx+rxgx=xIfx+Rxgx
68 51 51 67 mpoeq123dv φs=Sr=Rv=Bfv,gvxdomrfx+rxgx=fB,gBxIfx+Rxgx
69 68 adantr φs=Sr=Rv=Bh=Hfv,gvxdomrfx+rxgx=fB,gBxIfx+Rxgx
70 5 ad4antr φs=Sr=Rv=Bh=H+˙=fB,gBxIfx+Rxgx
71 69 70 eqtr4d φs=Sr=Rv=Bh=Hfv,gvxdomrfx+rxgx=+˙
72 71 opeq2d φs=Sr=Rv=Bh=H+ndxfv,gvxdomrfx+rxgx=+ndx+˙
73 40 fveq2d φs=Sr=Rrx=Rx
74 73 oveqd φs=Sr=Rfxrxgx=fxRxgx
75 45 74 mpteq12dv φs=Sr=Rxdomrfxrxgx=xIfxRxgx
76 75 adantr φs=Sr=Rv=Bxdomrfxrxgx=xIfxRxgx
77 51 51 76 mpoeq123dv φs=Sr=Rv=Bfv,gvxdomrfxrxgx=fB,gBxIfxRxgx
78 77 adantr φs=Sr=Rv=Bh=Hfv,gvxdomrfxrxgx=fB,gBxIfxRxgx
79 6 ad4antr φs=Sr=Rv=Bh=H×˙=fB,gBxIfxRxgx
80 78 79 eqtr4d φs=Sr=Rv=Bh=Hfv,gvxdomrfxrxgx=×˙
81 80 opeq2d φs=Sr=Rv=Bh=Hndxfv,gvxdomrfxrxgx=ndx×˙
82 63 72 81 tpeq123d φs=Sr=Rv=Bh=HBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgx=BasendxB+ndx+˙ndx×˙
83 simp-4r φs=Sr=Rv=Bh=Hs=S
84 83 opeq2d φs=Sr=Rv=Bh=HScalarndxs=ScalarndxS
85 simpllr φs=Sr=Rv=Bs=S
86 85 fveq2d φs=Sr=Rv=BBases=BaseS
87 86 2 eqtr4di φs=Sr=Rv=BBases=K
88 40 fveq2d φs=Sr=Rrx=Rx
89 88 oveqd φs=Sr=Rfrxgx=fRxgx
90 45 89 mpteq12dv φs=Sr=Rxdomrfrxgx=xIfRxgx
91 90 adantr φs=Sr=Rv=Bxdomrfrxgx=xIfRxgx
92 87 51 91 mpoeq123dv φs=Sr=Rv=BfBases,gvxdomrfrxgx=fK,gBxIfRxgx
93 92 adantr φs=Sr=Rv=Bh=HfBases,gvxdomrfrxgx=fK,gBxIfRxgx
94 7 ad4antr φs=Sr=Rv=Bh=H·˙=fK,gBxIfRxgx
95 93 94 eqtr4d φs=Sr=Rv=Bh=HfBases,gvxdomrfrxgx=·˙
96 95 opeq2d φs=Sr=Rv=Bh=HndxfBases,gvxdomrfrxgx=ndx·˙
97 40 fveq2d φs=Sr=R𝑖rx=𝑖Rx
98 97 oveqd φs=Sr=Rfx𝑖rxgx=fx𝑖Rxgx
99 45 98 mpteq12dv φs=Sr=Rxdomrfx𝑖rxgx=xIfx𝑖Rxgx
100 99 adantr φs=Sr=Rv=Bxdomrfx𝑖rxgx=xIfx𝑖Rxgx
101 85 100 oveq12d φs=Sr=Rv=Bsxdomrfx𝑖rxgx=SxIfx𝑖Rxgx
102 51 51 101 mpoeq123dv φs=Sr=Rv=Bfv,gvsxdomrfx𝑖rxgx=fB,gBSxIfx𝑖Rxgx
103 102 adantr φs=Sr=Rv=Bh=Hfv,gvsxdomrfx𝑖rxgx=fB,gBSxIfx𝑖Rxgx
104 8 ad4antr φs=Sr=Rv=Bh=H,˙=fB,gBSxIfx𝑖Rxgx
105 103 104 eqtr4d φs=Sr=Rv=Bh=Hfv,gvsxdomrfx𝑖rxgx=,˙
106 105 opeq2d φs=Sr=Rv=Bh=H𝑖ndxfv,gvsxdomrfx𝑖rxgx=𝑖ndx,˙
107 84 96 106 tpeq123d φs=Sr=Rv=Bh=HScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgx=ScalarndxSndx·˙𝑖ndx,˙
108 82 107 uneq12d φs=Sr=Rv=Bh=HBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgx=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙
109 simpllr φs=Sr=Rv=Bh=Hr=R
110 109 coeq2d φs=Sr=Rv=Bh=HTopOpenr=TopOpenR
111 110 fveq2d φs=Sr=Rv=Bh=H𝑡TopOpenr=𝑡TopOpenR
112 9 ad4antr φs=Sr=Rv=Bh=HO=𝑡TopOpenR
113 111 112 eqtr4d φs=Sr=Rv=Bh=H𝑡TopOpenr=O
114 113 opeq2d φs=Sr=Rv=Bh=HTopSetndx𝑡TopOpenr=TopSetndxO
115 51 sseq2d φs=Sr=Rv=BfgvfgB
116 40 fveq2d φs=Sr=Rrx=Rx
117 116 breqd φs=Sr=RfxrxgxfxRxgx
118 45 117 raleqbidv φs=Sr=RxdomrfxrxgxxIfxRxgx
119 118 adantr φs=Sr=Rv=BxdomrfxrxgxxIfxRxgx
120 115 119 anbi12d φs=Sr=Rv=BfgvxdomrfxrxgxfgBxIfxRxgx
121 120 opabbidv φs=Sr=Rv=Bfg|fgvxdomrfxrxgx=fg|fgBxIfxRxgx
122 121 adantr φs=Sr=Rv=Bh=Hfg|fgvxdomrfxrxgx=fg|fgBxIfxRxgx
123 10 ad4antr φs=Sr=Rv=Bh=H˙=fg|fgBxIfxRxgx
124 122 123 eqtr4d φs=Sr=Rv=Bh=Hfg|fgvxdomrfxrxgx=˙
125 124 opeq2d φs=Sr=Rv=Bh=Hndxfg|fgvxdomrfxrxgx=ndx˙
126 40 fveq2d φs=Sr=Rdistrx=distRx
127 126 oveqd φs=Sr=Rfxdistrxgx=fxdistRxgx
128 45 127 mpteq12dv φs=Sr=Rxdomrfxdistrxgx=xIfxdistRxgx
129 128 adantr φs=Sr=Rv=Bxdomrfxdistrxgx=xIfxdistRxgx
130 129 rneqd φs=Sr=Rv=Branxdomrfxdistrxgx=ranxIfxdistRxgx
131 130 uneq1d φs=Sr=Rv=Branxdomrfxdistrxgx0=ranxIfxdistRxgx0
132 131 supeq1d φs=Sr=Rv=Bsupranxdomrfxdistrxgx0*<=supranxIfxdistRxgx0*<
133 51 51 132 mpoeq123dv φs=Sr=Rv=Bfv,gvsupranxdomrfxdistrxgx0*<=fB,gBsupranxIfxdistRxgx0*<
134 133 adantr φs=Sr=Rv=Bh=Hfv,gvsupranxdomrfxdistrxgx0*<=fB,gBsupranxIfxdistRxgx0*<
135 11 ad4antr φs=Sr=Rv=Bh=HD=fB,gBsupranxIfxdistRxgx0*<
136 134 135 eqtr4d φs=Sr=Rv=Bh=Hfv,gvsupranxdomrfxdistrxgx0*<=D
137 136 opeq2d φs=Sr=Rv=Bh=Hdistndxfv,gvsupranxdomrfxdistrxgx0*<=distndxD
138 114 125 137 tpeq123d φs=Sr=Rv=Bh=HTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<=TopSetndxOndx˙distndxD
139 simpr φs=Sr=Rv=Bh=Hh=H
140 139 opeq2d φs=Sr=Rv=Bh=HHomndxh=HomndxH
141 62 sqxpeqd φs=Sr=Rv=Bh=Hv×v=B×B
142 139 oveqd φs=Sr=Rv=Bh=H2ndahc=2ndaHc
143 139 fveq1d φs=Sr=Rv=Bh=Hha=Ha
144 40 fveq2d φs=Sr=Rcomprx=compRx
145 144 oveqd φs=Sr=R1stax2ndaxcomprxcx=1stax2ndaxcompRxcx
146 145 oveqd φs=Sr=Rdx1stax2ndaxcomprxcxex=dx1stax2ndaxcompRxcxex
147 45 146 mpteq12dv φs=Sr=Rxdomrdx1stax2ndaxcomprxcxex=xIdx1stax2ndaxcompRxcxex
148 147 ad2antrr φs=Sr=Rv=Bh=Hxdomrdx1stax2ndaxcomprxcxex=xIdx1stax2ndaxcompRxcxex
149 142 143 148 mpoeq123dv φs=Sr=Rv=Bh=Hd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=d2ndaHc,eHaxIdx1stax2ndaxcompRxcxex
150 141 62 149 mpoeq123dv φs=Sr=Rv=Bh=Hav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=aB×B,cBd2ndaHc,eHaxIdx1stax2ndaxcompRxcxex
151 13 ad4antr φs=Sr=Rv=Bh=H˙=aB×B,cBd2ndaHc,eHaxIdx1stax2ndaxcompRxcxex
152 150 151 eqtr4d φs=Sr=Rv=Bh=Hav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=˙
153 152 opeq2d φs=Sr=Rv=Bh=Hcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=compndx˙
154 140 153 preq12d φs=Sr=Rv=Bh=HHomndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=HomndxHcompndx˙
155 138 154 uneq12d φs=Sr=Rv=Bh=HTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=TopSetndxOndx˙distndxDHomndxHcompndx˙
156 108 155 uneq12d φs=Sr=Rv=Bh=HBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙
157 50 61 156 csbied2 φs=Sr=Rv=Bfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙
158 38 48 157 csbied2 φs=Sr=RxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙
159 158 anasss φs=Sr=RxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙
160 14 elexd φSV
161 15 elexd φRV
162 tpex BasendxB+ndx+˙ndx×˙V
163 tpex ScalarndxSndx·˙𝑖ndx,˙V
164 162 163 unex BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙V
165 tpex TopSetndxOndx˙distndxDV
166 prex HomndxHcompndx˙V
167 165 166 unex TopSetndxOndx˙distndxDHomndxHcompndx˙V
168 164 167 unex BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙V
169 168 a1i φBasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙V
170 17 159 160 161 169 ovmpod φS𝑠R=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙
171 1 170 eqtrid φP=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndx˙distndxDHomndxHcompndx˙