Metamath Proof Explorer


Theorem primefld

Description: The smallest sub division ring of a division ring, here named P , is a field, called thePrime Field of R . (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis primefld.1 P=R𝑠SubDRingR
Assertion primefld RDivRingPField

Proof

Step Hyp Ref Expression
1 primefld.1 P=R𝑠SubDRingR
2 id RDivRingRDivRing
3 issdrg sSubDRingRRDivRingsSubRingRR𝑠sDivRing
4 3 simp2bi sSubDRingRsSubRingR
5 4 ssriv SubDRingRSubRingR
6 5 a1i RDivRingSubDRingRSubRingR
7 eqid BaseR=BaseR
8 7 sdrgid RDivRingBaseRSubDRingR
9 8 ne0d RDivRingSubDRingR
10 3 simp3bi sSubDRingRR𝑠sDivRing
11 10 adantl RDivRingsSubDRingRR𝑠sDivRing
12 1 2 6 9 11 subdrgint RDivRingPDivRing
13 drngring PDivRingPRing
14 12 13 syl RDivRingPRing
15 ssidd RDivRingBaseRBaseR
16 eqid mulGrpR=mulGrpR
17 eqid CntzmulGrpR=CntzmulGrpR
18 7 16 17 cntzsdrg RDivRingBaseRBaseRCntzmulGrpRBaseRSubDRingR
19 2 15 18 syl2anc RDivRingCntzmulGrpRBaseRSubDRingR
20 intss1 CntzmulGrpRBaseRSubDRingRSubDRingRCntzmulGrpRBaseR
21 19 20 syl RDivRingSubDRingRCntzmulGrpRBaseR
22 16 7 mgpbas BaseR=BasemulGrpR
23 22 17 cntrval CntzmulGrpRBaseR=CntrmulGrpR
24 21 23 sseqtrdi RDivRingSubDRingRCntrmulGrpR
25 22 cntrss CntrmulGrpRBaseR
26 24 25 sstrdi RDivRingSubDRingRBaseR
27 1 7 ressbas2 SubDRingRBaseRSubDRingR=BaseP
28 26 27 syl RDivRingSubDRingR=BaseP
29 28 24 eqsstrrd RDivRingBasePCntrmulGrpR
30 29 adantr RDivRingxBasePyBasePBasePCntrmulGrpR
31 simprl RDivRingxBasePyBasePxBaseP
32 30 31 sseldd RDivRingxBasePyBasePxCntrmulGrpR
33 28 26 eqsstrrd RDivRingBasePBaseR
34 33 adantr RDivRingxBasePyBasePBasePBaseR
35 simprr RDivRingxBasePyBasePyBaseP
36 34 35 sseldd RDivRingxBasePyBasePyBaseR
37 eqid R=R
38 16 37 mgpplusg R=+mulGrpR
39 eqid CntrmulGrpR=CntrmulGrpR
40 22 38 39 cntri xCntrmulGrpRyBaseRxRy=yRx
41 32 36 40 syl2anc RDivRingxBasePyBasePxRy=yRx
42 8 26 ssexd RDivRingSubDRingRV
43 1 37 ressmulr SubDRingRVR=P
44 42 43 syl RDivRingR=P
45 44 oveqdr RDivRingxBasePyBasePxRy=xPy
46 44 oveqdr RDivRingxBasePyBasePyRx=yPx
47 41 45 46 3eqtr3d RDivRingxBasePyBasePxPy=yPx
48 47 ralrimivva RDivRingxBasePyBasePxPy=yPx
49 eqid BaseP=BaseP
50 eqid P=P
51 49 50 iscrng2 PCRingPRingxBasePyBasePxPy=yPx
52 14 48 51 sylanbrc RDivRingPCRing
53 isfld PFieldPDivRingPCRing
54 12 52 53 sylanbrc RDivRingPField