Description: The smallest sub division ring of a division ring, here named P , is a field, called thePrime Field of R . (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | primefld.1 | |
|
Assertion | primefld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | primefld.1 | |
|
2 | id | |
|
3 | issdrg | |
|
4 | 3 | simp2bi | |
5 | 4 | ssriv | |
6 | 5 | a1i | |
7 | eqid | |
|
8 | 7 | sdrgid | |
9 | 8 | ne0d | |
10 | 3 | simp3bi | |
11 | 10 | adantl | |
12 | 1 2 6 9 11 | subdrgint | |
13 | drngring | |
|
14 | 12 13 | syl | |
15 | ssidd | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 7 16 17 | cntzsdrg | |
19 | 2 15 18 | syl2anc | |
20 | intss1 | |
|
21 | 19 20 | syl | |
22 | 16 7 | mgpbas | |
23 | 22 17 | cntrval | |
24 | 21 23 | sseqtrdi | |
25 | 22 | cntrss | |
26 | 24 25 | sstrdi | |
27 | 1 7 | ressbas2 | |
28 | 26 27 | syl | |
29 | 28 24 | eqsstrrd | |
30 | 29 | adantr | |
31 | simprl | |
|
32 | 30 31 | sseldd | |
33 | 28 26 | eqsstrrd | |
34 | 33 | adantr | |
35 | simprr | |
|
36 | 34 35 | sseldd | |
37 | eqid | |
|
38 | 16 37 | mgpplusg | |
39 | eqid | |
|
40 | 22 38 39 | cntri | |
41 | 32 36 40 | syl2anc | |
42 | 8 26 | ssexd | |
43 | 1 37 | ressmulr | |
44 | 42 43 | syl | |
45 | 44 | oveqdr | |
46 | 44 | oveqdr | |
47 | 41 45 46 | 3eqtr3d | |
48 | 47 | ralrimivva | |
49 | eqid | |
|
50 | eqid | |
|
51 | 49 50 | iscrng2 | |
52 | 14 48 51 | sylanbrc | |
53 | isfld | |
|
54 | 12 52 53 | sylanbrc | |