Metamath Proof Explorer


Theorem prmgaplem3

Description: Lemma for prmgap . (Contributed by AV, 9-Aug-2020)

Ref Expression
Hypothesis prmgaplem3.a A=p|p<N
Assertion prmgaplem3 N3xAyAyx

Proof

Step Hyp Ref Expression
1 prmgaplem3.a A=p|p<N
2 ssrab2 p|p<N
3 2 a1i N3p|p<N
4 prmssnn
5 nnssre
6 4 5 sstri
7 3 6 sstrdi N3p|p<N
8 fzofi 0..^NFin
9 breq1 p=ip<Ni<N
10 9 elrab ip|p<Nii<N
11 prmnn ii
12 11 nnnn0d ii0
13 12 ad2antrl N3ii<Ni0
14 eluzge3nn N3N
15 14 adantr N3ii<NN
16 simprr N3ii<Ni<N
17 elfzo0 i0..^Ni0Ni<N
18 13 15 16 17 syl3anbrc N3ii<Ni0..^N
19 18 ex N3ii<Ni0..^N
20 10 19 biimtrid N3ip|p<Ni0..^N
21 20 ssrdv N3p|p<N0..^N
22 ssfi 0..^NFinp|p<N0..^Np|p<NFin
23 8 21 22 sylancr N3p|p<NFin
24 breq1 p=2p<N2<N
25 2prm 2
26 25 a1i N32
27 eluz2 N33N3N
28 df-3 3=2+1
29 28 breq1i 3N2+1N
30 2z 2
31 zltp1le 2N2<N2+1N
32 30 31 mpan N2<N2+1N
33 32 biimprd N2+1N2<N
34 29 33 biimtrid N3N2<N
35 34 imp N3N2<N
36 35 3adant1 3N3N2<N
37 27 36 sylbi N32<N
38 24 26 37 elrabd N32p|p<N
39 38 ne0d N3p|p<N
40 sseq1 A=p|p<NAp|p<N
41 eleq1 A=p|p<NAFinp|p<NFin
42 neeq1 A=p|p<NAp|p<N
43 40 41 42 3anbi123d A=p|p<NAAFinAp|p<Np|p<NFinp|p<N
44 1 43 ax-mp AAFinAp|p<Np|p<NFinp|p<N
45 7 23 39 44 syl3anbrc N3AAFinA
46 fimaxre AAFinAxAyAyx
47 45 46 syl N3xAyAyx