| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmgaplem3.a |
|
| 2 |
|
ssrab2 |
|
| 3 |
2
|
a1i |
|
| 4 |
|
prmssnn |
|
| 5 |
|
nnssre |
|
| 6 |
4 5
|
sstri |
|
| 7 |
3 6
|
sstrdi |
|
| 8 |
|
fzofi |
|
| 9 |
|
breq1 |
|
| 10 |
9
|
elrab |
|
| 11 |
|
prmnn |
|
| 12 |
11
|
nnnn0d |
|
| 13 |
12
|
ad2antrl |
|
| 14 |
|
eluzge3nn |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simprr |
|
| 17 |
|
elfzo0 |
|
| 18 |
13 15 16 17
|
syl3anbrc |
|
| 19 |
18
|
ex |
|
| 20 |
10 19
|
biimtrid |
|
| 21 |
20
|
ssrdv |
|
| 22 |
|
ssfi |
|
| 23 |
8 21 22
|
sylancr |
|
| 24 |
|
breq1 |
|
| 25 |
|
2prm |
|
| 26 |
25
|
a1i |
|
| 27 |
|
eluz2 |
|
| 28 |
|
df-3 |
|
| 29 |
28
|
breq1i |
|
| 30 |
|
2z |
|
| 31 |
|
zltp1le |
|
| 32 |
30 31
|
mpan |
|
| 33 |
32
|
biimprd |
|
| 34 |
29 33
|
biimtrid |
|
| 35 |
34
|
imp |
|
| 36 |
35
|
3adant1 |
|
| 37 |
27 36
|
sylbi |
|
| 38 |
24 26 37
|
elrabd |
|
| 39 |
38
|
ne0d |
|
| 40 |
|
sseq1 |
|
| 41 |
|
eleq1 |
|
| 42 |
|
neeq1 |
|
| 43 |
40 41 42
|
3anbi123d |
|
| 44 |
1 43
|
ax-mp |
|
| 45 |
7 23 39 44
|
syl3anbrc |
|
| 46 |
|
fimaxre |
|
| 47 |
45 46
|
syl |
|