Description: Lemma for prmgap . (Contributed by AV, 9-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prmgaplem3.a | |
|
Assertion | prmgaplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmgaplem3.a | |
|
2 | ssrab2 | |
|
3 | 2 | a1i | |
4 | prmssnn | |
|
5 | nnssre | |
|
6 | 4 5 | sstri | |
7 | 3 6 | sstrdi | |
8 | fzofi | |
|
9 | breq1 | |
|
10 | 9 | elrab | |
11 | prmnn | |
|
12 | 11 | nnnn0d | |
13 | 12 | ad2antrl | |
14 | eluzge3nn | |
|
15 | 14 | adantr | |
16 | simprr | |
|
17 | elfzo0 | |
|
18 | 13 15 16 17 | syl3anbrc | |
19 | 18 | ex | |
20 | 10 19 | biimtrid | |
21 | 20 | ssrdv | |
22 | ssfi | |
|
23 | 8 21 22 | sylancr | |
24 | breq1 | |
|
25 | 2prm | |
|
26 | 25 | a1i | |
27 | eluz2 | |
|
28 | df-3 | |
|
29 | 28 | breq1i | |
30 | 2z | |
|
31 | zltp1le | |
|
32 | 30 31 | mpan | |
33 | 32 | biimprd | |
34 | 29 33 | biimtrid | |
35 | 34 | imp | |
36 | 35 | 3adant1 | |
37 | 27 36 | sylbi | |
38 | 24 26 37 | elrabd | |
39 | 38 | ne0d | |
40 | sseq1 | |
|
41 | eleq1 | |
|
42 | neeq1 | |
|
43 | 40 41 42 | 3anbi123d | |
44 | 1 43 | ax-mp | |
45 | 7 23 39 44 | syl3anbrc | |
46 | fimaxre | |
|
47 | 45 46 | syl | |