Description: Lemma 2 for psgndif . (Contributed by AV, 31-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psgnfix.p | |
|
psgnfix.t | |
||
psgnfix.s | |
||
psgnfix.z | |
||
psgnfix.r | |
||
Assertion | psgndiflemA | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfix.p | |
|
2 | psgnfix.t | |
|
3 | psgnfix.s | |
|
4 | psgnfix.z | |
|
5 | psgnfix.r | |
|
6 | fveq2 | |
|
7 | 6 | eqeq1d | |
8 | 6 | oveq2d | |
9 | fveq1 | |
|
10 | 9 | fveq1d | |
11 | 10 | eqeq1d | |
12 | 11 | ralbidv | |
13 | 12 | anbi2d | |
14 | 8 13 | raleqbidv | |
15 | 7 14 | anbi12d | |
16 | 15 | rexbidv | |
17 | 16 | rspccv | |
18 | 2 5 | pmtrdifwrdel2 | |
19 | 17 18 | syl11 | |
20 | 19 | 3ad2ant1 | |
21 | 20 | com12 | |
22 | 21 | ad2antlr | |
23 | 22 | imp | |
24 | oveq2 | |
|
25 | 24 | adantr | |
26 | 25 | ad3antlr | |
27 | simplll | |
|
28 | 27 | ad2antlr | |
29 | simplll | |
|
30 | simprr3 | |
|
31 | 30 | adantr | |
32 | simplrl | |
|
33 | 3simpa | |
|
34 | 33 | adantl | |
35 | 34 | ad2antlr | |
36 | simplrl | |
|
37 | 36 | adantr | |
38 | simplrr | |
|
39 | 38 | adantr | |
40 | 1 2 3 4 5 | psgndiflemB | |
41 | 40 | imp31 | |
42 | 41 | eqcomd | |
43 | 32 35 29 37 39 42 | syl23anc | |
44 | id | |
|
45 | 4 | eqcomi | |
46 | 45 | oveq1i | |
47 | 44 46 | eqtrdi | |
48 | 47 | adantl | |
49 | 43 48 | eqtrd | |
50 | 4 5 28 29 31 49 | psgnuni | |
51 | 26 50 | eqtrd | |
52 | 51 | ex | |
53 | 52 | ex | |
54 | 53 | rexlimiva | |
55 | 23 54 | mpcom | |
56 | 55 | ex | |