Metamath Proof Explorer


Theorem psgndiflemA

Description: Lemma 2 for psgndif . (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses psgnfix.p P=BaseSymGrpN
psgnfix.t T=ranpmTrspNK
psgnfix.s S=SymGrpNK
psgnfix.z Z=SymGrpN
psgnfix.r R=ranpmTrspN
Assertion psgndiflemA NFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1U

Proof

Step Hyp Ref Expression
1 psgnfix.p P=BaseSymGrpN
2 psgnfix.t T=ranpmTrspNK
3 psgnfix.s S=SymGrpNK
4 psgnfix.z Z=SymGrpN
5 psgnfix.r R=ranpmTrspN
6 fveq2 w=Ww=W
7 6 eqeq1d w=Ww=rW=r
8 6 oveq2d w=W0..^w=0..^W
9 fveq1 w=Wwi=Wi
10 9 fveq1d w=Wwin=Win
11 10 eqeq1d w=Wwin=rinWin=rin
12 11 ralbidv w=WnNKwin=rinnNKWin=rin
13 12 anbi2d w=WriK=KnNKwin=rinriK=KnNKWin=rin
14 8 13 raleqbidv w=Wi0..^wriK=KnNKwin=rini0..^WriK=KnNKWin=rin
15 7 14 anbi12d w=Ww=ri0..^wriK=KnNKwin=rinW=ri0..^WriK=KnNKWin=rin
16 15 rexbidv w=WrWordRw=ri0..^wriK=KnNKwin=rinrWordRW=ri0..^WriK=KnNKWin=rin
17 16 rspccv wWordTrWordRw=ri0..^wriK=KnNKwin=rinWWordTrWordRW=ri0..^WriK=KnNKWin=rin
18 2 5 pmtrdifwrdel2 KNwWordTrWordRw=ri0..^wriK=KnNKwin=rin
19 17 18 syl11 WWordTKNrWordRW=ri0..^WriK=KnNKWin=rin
20 19 3ad2ant1 WWordTQNK=SWUWordRKNrWordRW=ri0..^WriK=KnNKWin=rin
21 20 com12 KNWWordTQNK=SWUWordRrWordRW=ri0..^WriK=KnNKWin=rin
22 21 ad2antlr NFinKNQqP|qK=KWWordTQNK=SWUWordRrWordRW=ri0..^WriK=KnNKWin=rin
23 22 imp NFinKNQqP|qK=KWWordTQNK=SWUWordRrWordRW=ri0..^WriK=KnNKWin=rin
24 oveq2 W=r1W=1r
25 24 adantr W=ri0..^WriK=KnNKWin=rin1W=1r
26 25 ad3antlr rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1r
27 simplll NFinKNQqP|qK=KWWordTQNK=SWUWordRNFin
28 27 ad2antlr rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUNFin
29 simplll rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUrWordR
30 simprr3 rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRUWordR
31 30 adantr rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUUWordR
32 simplrl rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUNFinKNQqP|qK=K
33 3simpa WWordTQNK=SWUWordRWWordTQNK=SW
34 33 adantl NFinKNQqP|qK=KWWordTQNK=SWUWordRWWordTQNK=SW
35 34 ad2antlr rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUWWordTQNK=SW
36 simplrl rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRW=r
37 36 adantr rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUW=r
38 simplrr rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRi0..^WriK=KnNKWin=rin
39 38 adantr rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUi0..^WriK=KnNKWin=rin
40 1 2 3 4 5 psgndiflemB NFinKNQqP|qK=KWWordTQNK=SWrWordRW=ri0..^WriK=KnNKWin=rinQ=Zr
41 40 imp31 NFinKNQqP|qK=KWWordTQNK=SWrWordRW=ri0..^WriK=KnNKWin=rinQ=Zr
42 41 eqcomd NFinKNQqP|qK=KWWordTQNK=SWrWordRW=ri0..^WriK=KnNKWin=rinZr=Q
43 32 35 29 37 39 42 syl23anc rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUZr=Q
44 id Q=SymGrpNUQ=SymGrpNU
45 4 eqcomi SymGrpN=Z
46 45 oveq1i SymGrpNU=ZU
47 44 46 eqtrdi Q=SymGrpNUQ=ZU
48 47 adantl rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUQ=ZU
49 43 48 eqtrd rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNUZr=ZU
50 4 5 28 29 31 49 psgnuni rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1r=1U
51 26 50 eqtrd rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1U
52 51 ex rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1U
53 52 ex rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1U
54 53 rexlimiva rWordRW=ri0..^WriK=KnNKWin=rinNFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1U
55 23 54 mpcom NFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1U
56 55 ex NFinKNQqP|qK=KWWordTQNK=SWUWordRQ=SymGrpNU1W=1U