Description: Lemma for pwfseq . Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwfseqlem4.g | |
|
pwfseqlem4.x | |
||
pwfseqlem4.h | |
||
pwfseqlem4.ps | |
||
pwfseqlem4.k | |
||
pwfseqlem4.d | |
||
Assertion | pwfseqlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwfseqlem4.g | |
|
2 | pwfseqlem4.x | |
|
3 | pwfseqlem4.h | |
|
4 | pwfseqlem4.ps | |
|
5 | pwfseqlem4.k | |
|
6 | pwfseqlem4.d | |
|
7 | 1 | adantr | |
8 | f1f | |
|
9 | 7 8 | syl | |
10 | ssrab2 | |
|
11 | simprl1 | |
|
12 | 4 11 | sylan2b | |
13 | 10 12 | sstrid | |
14 | vex | |
|
15 | 14 | rabex | |
16 | 15 | elpw | |
17 | 13 16 | sylibr | |
18 | 9 17 | ffvelcdmd | |
19 | 6 18 | eqeltrid | |
20 | pm5.19 | |
|
21 | 5 | adantr | |
22 | f1f | |
|
23 | 21 22 | syl | |
24 | ffvelcdm | |
|
25 | 23 24 | sylancom | |
26 | f1f1orn | |
|
27 | 21 26 | syl | |
28 | f1ocnvfv1 | |
|
29 | 27 28 | sylancom | |
30 | f1fn | |
|
31 | 7 30 | syl | |
32 | fnfvelrn | |
|
33 | 31 17 32 | syl2anc | |
34 | 6 33 | eqeltrid | |
35 | 34 | adantr | |
36 | 29 35 | eqeltrd | |
37 | fveq2 | |
|
38 | 37 | eleq1d | |
39 | id | |
|
40 | 2fveq3 | |
|
41 | 39 40 | eleq12d | |
42 | 41 | notbid | |
43 | 38 42 | anbi12d | |
44 | fveq2 | |
|
45 | 44 | eleq1d | |
46 | id | |
|
47 | 2fveq3 | |
|
48 | 46 47 | eleq12d | |
49 | 48 | notbid | |
50 | 45 49 | anbi12d | |
51 | 50 | cbvrabv | |
52 | 43 51 | elrab2 | |
53 | anass | |
|
54 | 52 53 | bitr4i | |
55 | 54 | baib | |
56 | 25 36 55 | syl2anc | |
57 | 29 6 | eqtrdi | |
58 | 57 | fveq2d | |
59 | f1f1orn | |
|
60 | 7 59 | syl | |
61 | f1ocnvfv1 | |
|
62 | 60 17 61 | syl2anc | |
63 | 62 | adantr | |
64 | 58 63 | eqtrd | |
65 | 64 | eleq2d | |
66 | 65 | notbid | |
67 | 56 66 | bitrd | |
68 | 67 | ex | |
69 | 20 68 | mtoi | |
70 | 19 69 | eldifd | |