Metamath Proof Explorer


Theorem pwfseqlem1

Description: Lemma for pwfseq . Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem4.g φG:𝒫A1-1nωAn
pwfseqlem4.x φXA
pwfseqlem4.h φH:ω1-1 ontoX
pwfseqlem4.ps ψxArx×xrWexωx
pwfseqlem4.k φψK:nωxn1-1x
pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
Assertion pwfseqlem1 φψDnωAnnωxn

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φG:𝒫A1-1nωAn
2 pwfseqlem4.x φXA
3 pwfseqlem4.h φH:ω1-1 ontoX
4 pwfseqlem4.ps ψxArx×xrWexωx
5 pwfseqlem4.k φψK:nωxn1-1x
6 pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
7 1 adantr φψG:𝒫A1-1nωAn
8 f1f G:𝒫A1-1nωAnG:𝒫AnωAn
9 7 8 syl φψG:𝒫AnωAn
10 ssrab2 wx|K-1wranG¬wG-1K-1wx
11 simprl1 φxArx×xrWexωxxA
12 4 11 sylan2b φψxA
13 10 12 sstrid φψwx|K-1wranG¬wG-1K-1wA
14 vex xV
15 14 rabex wx|K-1wranG¬wG-1K-1wV
16 15 elpw wx|K-1wranG¬wG-1K-1w𝒫Awx|K-1wranG¬wG-1K-1wA
17 13 16 sylibr φψwx|K-1wranG¬wG-1K-1w𝒫A
18 9 17 ffvelcdmd φψGwx|K-1wranG¬wG-1K-1wnωAn
19 6 18 eqeltrid φψDnωAn
20 pm5.19 ¬KDwx|K-1wranG¬wG-1K-1w¬KDwx|K-1wranG¬wG-1K-1w
21 5 adantr φψDnωxnK:nωxn1-1x
22 f1f K:nωxn1-1xK:nωxnx
23 21 22 syl φψDnωxnK:nωxnx
24 ffvelcdm K:nωxnxDnωxnKDx
25 23 24 sylancom φψDnωxnKDx
26 f1f1orn K:nωxn1-1xK:nωxn1-1 ontoranK
27 21 26 syl φψDnωxnK:nωxn1-1 ontoranK
28 f1ocnvfv1 K:nωxn1-1 ontoranKDnωxnK-1KD=D
29 27 28 sylancom φψDnωxnK-1KD=D
30 f1fn G:𝒫A1-1nωAnGFn𝒫A
31 7 30 syl φψGFn𝒫A
32 fnfvelrn GFn𝒫Awx|K-1wranG¬wG-1K-1w𝒫AGwx|K-1wranG¬wG-1K-1wranG
33 31 17 32 syl2anc φψGwx|K-1wranG¬wG-1K-1wranG
34 6 33 eqeltrid φψDranG
35 34 adantr φψDnωxnDranG
36 29 35 eqeltrd φψDnωxnK-1KDranG
37 fveq2 y=KDK-1y=K-1KD
38 37 eleq1d y=KDK-1yranGK-1KDranG
39 id y=KDy=KD
40 2fveq3 y=KDG-1K-1y=G-1K-1KD
41 39 40 eleq12d y=KDyG-1K-1yKDG-1K-1KD
42 41 notbid y=KD¬yG-1K-1y¬KDG-1K-1KD
43 38 42 anbi12d y=KDK-1yranG¬yG-1K-1yK-1KDranG¬KDG-1K-1KD
44 fveq2 w=yK-1w=K-1y
45 44 eleq1d w=yK-1wranGK-1yranG
46 id w=yw=y
47 2fveq3 w=yG-1K-1w=G-1K-1y
48 46 47 eleq12d w=ywG-1K-1wyG-1K-1y
49 48 notbid w=y¬wG-1K-1w¬yG-1K-1y
50 45 49 anbi12d w=yK-1wranG¬wG-1K-1wK-1yranG¬yG-1K-1y
51 50 cbvrabv wx|K-1wranG¬wG-1K-1w=yx|K-1yranG¬yG-1K-1y
52 43 51 elrab2 KDwx|K-1wranG¬wG-1K-1wKDxK-1KDranG¬KDG-1K-1KD
53 anass KDxK-1KDranG¬KDG-1K-1KDKDxK-1KDranG¬KDG-1K-1KD
54 52 53 bitr4i KDwx|K-1wranG¬wG-1K-1wKDxK-1KDranG¬KDG-1K-1KD
55 54 baib KDxK-1KDranGKDwx|K-1wranG¬wG-1K-1w¬KDG-1K-1KD
56 25 36 55 syl2anc φψDnωxnKDwx|K-1wranG¬wG-1K-1w¬KDG-1K-1KD
57 29 6 eqtrdi φψDnωxnK-1KD=Gwx|K-1wranG¬wG-1K-1w
58 57 fveq2d φψDnωxnG-1K-1KD=G-1Gwx|K-1wranG¬wG-1K-1w
59 f1f1orn G:𝒫A1-1nωAnG:𝒫A1-1 ontoranG
60 7 59 syl φψG:𝒫A1-1 ontoranG
61 f1ocnvfv1 G:𝒫A1-1 ontoranGwx|K-1wranG¬wG-1K-1w𝒫AG-1Gwx|K-1wranG¬wG-1K-1w=wx|K-1wranG¬wG-1K-1w
62 60 17 61 syl2anc φψG-1Gwx|K-1wranG¬wG-1K-1w=wx|K-1wranG¬wG-1K-1w
63 62 adantr φψDnωxnG-1Gwx|K-1wranG¬wG-1K-1w=wx|K-1wranG¬wG-1K-1w
64 58 63 eqtrd φψDnωxnG-1K-1KD=wx|K-1wranG¬wG-1K-1w
65 64 eleq2d φψDnωxnKDG-1K-1KDKDwx|K-1wranG¬wG-1K-1w
66 65 notbid φψDnωxn¬KDG-1K-1KD¬KDwx|K-1wranG¬wG-1K-1w
67 56 66 bitrd φψDnωxnKDwx|K-1wranG¬wG-1K-1w¬KDwx|K-1wranG¬wG-1K-1w
68 67 ex φψDnωxnKDwx|K-1wranG¬wG-1K-1w¬KDwx|K-1wranG¬wG-1K-1w
69 20 68 mtoi φψ¬Dnωxn
70 19 69 eldifd φψDnωAnnωxn