Metamath Proof Explorer


Theorem pwsdiagmhm

Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015)

Ref Expression
Hypotheses pwsdiagmhm.y Y=R𝑠I
pwsdiagmhm.b B=BaseR
pwsdiagmhm.f F=xBI×x
Assertion pwsdiagmhm RMndIWFRMndHomY

Proof

Step Hyp Ref Expression
1 pwsdiagmhm.y Y=R𝑠I
2 pwsdiagmhm.b B=BaseR
3 pwsdiagmhm.f F=xBI×x
4 simpl RMndIWRMnd
5 1 pwsmnd RMndIWYMnd
6 2 fvexi BV
7 3 fdiagfn BVIWF:BBI
8 6 7 mpan IWF:BBI
9 8 adantl RMndIWF:BBI
10 1 2 pwsbas RMndIWBI=BaseY
11 10 feq3d RMndIWF:BBIF:BBaseY
12 9 11 mpbid RMndIWF:BBaseY
13 simplr RMndIWaBbBIW
14 eqid +R=+R
15 2 14 mndcl RMndaBbBa+RbB
16 15 3expb RMndaBbBa+RbB
17 16 adantlr RMndIWaBbBa+RbB
18 3 fvdiagfn IWa+RbBFa+Rb=I×a+Rb
19 13 17 18 syl2anc RMndIWaBbBFa+Rb=I×a+Rb
20 3 fvdiagfn IWaBFa=I×a
21 3 fvdiagfn IWbBFb=I×b
22 20 21 oveqan12d IWaBIWbBFa+YFb=I×a+YI×b
23 22 anandis IWaBbBFa+YFb=I×a+YI×b
24 23 adantll RMndIWaBbBFa+YFb=I×a+YI×b
25 eqid BaseY=BaseY
26 simpll RMndIWaBbBRMnd
27 1 2 25 pwsdiagel RMndIWaBI×aBaseY
28 27 adantrr RMndIWaBbBI×aBaseY
29 1 2 25 pwsdiagel RMndIWbBI×bBaseY
30 29 adantrl RMndIWaBbBI×bBaseY
31 eqid +Y=+Y
32 1 25 26 13 28 30 14 31 pwsplusgval RMndIWaBbBI×a+YI×b=I×a+RfI×b
33 id IWIW
34 vex aV
35 34 a1i IWaV
36 vex bV
37 36 a1i IWbV
38 33 35 37 ofc12 IWI×a+RfI×b=I×a+Rb
39 38 ad2antlr RMndIWaBbBI×a+RfI×b=I×a+Rb
40 24 32 39 3eqtrd RMndIWaBbBFa+YFb=I×a+Rb
41 19 40 eqtr4d RMndIWaBbBFa+Rb=Fa+YFb
42 41 ralrimivva RMndIWaBbBFa+Rb=Fa+YFb
43 simpr RMndIWIW
44 eqid 0R=0R
45 2 44 mndidcl RMnd0RB
46 45 adantr RMndIW0RB
47 3 fvdiagfn IW0RBF0R=I×0R
48 43 46 47 syl2anc RMndIWF0R=I×0R
49 1 44 pws0g RMndIWI×0R=0Y
50 48 49 eqtrd RMndIWF0R=0Y
51 12 42 50 3jca RMndIWF:BBaseYaBbBFa+Rb=Fa+YFbF0R=0Y
52 eqid 0Y=0Y
53 2 25 14 31 44 52 ismhm FRMndHomYRMndYMndF:BBaseYaBbBFa+Rb=Fa+YFbF0R=0Y
54 4 5 51 53 syl21anbrc RMndIWFRMndHomY