Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwsdiagmhm.y | |
|
pwsdiagmhm.b | |
||
pwsdiagmhm.f | |
||
Assertion | pwsdiagmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsdiagmhm.y | |
|
2 | pwsdiagmhm.b | |
|
3 | pwsdiagmhm.f | |
|
4 | simpl | |
|
5 | 1 | pwsmnd | |
6 | 2 | fvexi | |
7 | 3 | fdiagfn | |
8 | 6 7 | mpan | |
9 | 8 | adantl | |
10 | 1 2 | pwsbas | |
11 | 10 | feq3d | |
12 | 9 11 | mpbid | |
13 | simplr | |
|
14 | eqid | |
|
15 | 2 14 | mndcl | |
16 | 15 | 3expb | |
17 | 16 | adantlr | |
18 | 3 | fvdiagfn | |
19 | 13 17 18 | syl2anc | |
20 | 3 | fvdiagfn | |
21 | 3 | fvdiagfn | |
22 | 20 21 | oveqan12d | |
23 | 22 | anandis | |
24 | 23 | adantll | |
25 | eqid | |
|
26 | simpll | |
|
27 | 1 2 25 | pwsdiagel | |
28 | 27 | adantrr | |
29 | 1 2 25 | pwsdiagel | |
30 | 29 | adantrl | |
31 | eqid | |
|
32 | 1 25 26 13 28 30 14 31 | pwsplusgval | |
33 | id | |
|
34 | vex | |
|
35 | 34 | a1i | |
36 | vex | |
|
37 | 36 | a1i | |
38 | 33 35 37 | ofc12 | |
39 | 38 | ad2antlr | |
40 | 24 32 39 | 3eqtrd | |
41 | 19 40 | eqtr4d | |
42 | 41 | ralrimivva | |
43 | simpr | |
|
44 | eqid | |
|
45 | 2 44 | mndidcl | |
46 | 45 | adantr | |
47 | 3 | fvdiagfn | |
48 | 43 46 47 | syl2anc | |
49 | 1 44 | pws0g | |
50 | 48 49 | eqtrd | |
51 | 12 42 50 | 3jca | |
52 | eqid | |
|
53 | 2 25 14 31 44 52 | ismhm | |
54 | 4 5 51 53 | syl21anbrc | |