| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suceq |
|
| 2 |
1
|
raleqdv |
|
| 3 |
|
iuneq1 |
|
| 4 |
|
fveq2 |
|
| 5 |
3 4
|
breq12d |
|
| 6 |
2 5
|
imbi12d |
|
| 7 |
|
suceq |
|
| 8 |
7
|
raleqdv |
|
| 9 |
|
iuneq1 |
|
| 10 |
|
fveq2 |
|
| 11 |
9 10
|
breq12d |
|
| 12 |
8 11
|
imbi12d |
|
| 13 |
|
suceq |
|
| 14 |
13
|
raleqdv |
|
| 15 |
|
iuneq1 |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
breq12d |
|
| 18 |
14 17
|
imbi12d |
|
| 19 |
|
0iun |
|
| 20 |
|
0ex |
|
| 21 |
20
|
sucid |
|
| 22 |
|
fveq2 |
|
| 23 |
|
pweq |
|
| 24 |
22 23
|
breq12d |
|
| 25 |
24
|
rspcv |
|
| 26 |
21 25
|
ax-mp |
|
| 27 |
20
|
canth2 |
|
| 28 |
|
ensym |
|
| 29 |
|
sdomentr |
|
| 30 |
27 28 29
|
sylancr |
|
| 31 |
26 30
|
syl |
|
| 32 |
19 31
|
eqbrtrid |
|
| 33 |
|
sssucid |
|
| 34 |
|
ssralv |
|
| 35 |
33 34
|
ax-mp |
|
| 36 |
|
pm2.27 |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
adantl |
|
| 39 |
|
vex |
|
| 40 |
39
|
sucid |
|
| 41 |
|
elelsuc |
|
| 42 |
|
fveq2 |
|
| 43 |
|
pweq |
|
| 44 |
42 43
|
breq12d |
|
| 45 |
44
|
rspcv |
|
| 46 |
40 41 45
|
mp2b |
|
| 47 |
|
djuen |
|
| 48 |
46 46 47
|
syl2anc |
|
| 49 |
|
pwdju1 |
|
| 50 |
|
nnord |
|
| 51 |
|
ordirr |
|
| 52 |
50 51
|
syl |
|
| 53 |
|
dju1en |
|
| 54 |
52 53
|
mpdan |
|
| 55 |
|
pwen |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
entr |
|
| 58 |
49 56 57
|
syl2anc |
|
| 59 |
|
entr |
|
| 60 |
48 58 59
|
syl2an |
|
| 61 |
39
|
sucex |
|
| 62 |
61
|
sucid |
|
| 63 |
|
fveq2 |
|
| 64 |
|
pweq |
|
| 65 |
63 64
|
breq12d |
|
| 66 |
65
|
rspcv |
|
| 67 |
62 66
|
ax-mp |
|
| 68 |
67
|
ensymd |
|
| 69 |
68
|
adantr |
|
| 70 |
|
entr |
|
| 71 |
60 69 70
|
syl2anc |
|
| 72 |
71
|
ancoms |
|
| 73 |
|
nnfi |
|
| 74 |
|
pwfi |
|
| 75 |
|
isfinite |
|
| 76 |
74 75
|
bitri |
|
| 77 |
73 76
|
sylib |
|
| 78 |
|
ensdomtr |
|
| 79 |
46 77 78
|
syl2an |
|
| 80 |
|
isfinite |
|
| 81 |
79 80
|
sylibr |
|
| 82 |
81
|
ancoms |
|
| 83 |
39 42
|
iunsuc |
|
| 84 |
|
fvex |
|
| 85 |
39 84
|
iunex |
|
| 86 |
|
fvex |
|
| 87 |
|
undjudom |
|
| 88 |
85 86 87
|
mp2an |
|
| 89 |
83 88
|
eqbrtri |
|
| 90 |
|
sdomtr |
|
| 91 |
80 90
|
sylan2b |
|
| 92 |
|
isfinite |
|
| 93 |
91 92
|
sylibr |
|
| 94 |
|
finnum |
|
| 95 |
93 94
|
syl |
|
| 96 |
|
finnum |
|
| 97 |
96
|
adantl |
|
| 98 |
|
cardadju |
|
| 99 |
95 97 98
|
syl2anc |
|
| 100 |
|
ficardom |
|
| 101 |
93 100
|
syl |
|
| 102 |
|
ficardom |
|
| 103 |
102
|
adantl |
|
| 104 |
|
cardid2 |
|
| 105 |
93 94 104
|
3syl |
|
| 106 |
|
simpl |
|
| 107 |
|
cardid2 |
|
| 108 |
|
ensym |
|
| 109 |
96 107 108
|
3syl |
|
| 110 |
109
|
adantl |
|
| 111 |
|
ensdomtr |
|
| 112 |
|
sdomentr |
|
| 113 |
111 112
|
sylan |
|
| 114 |
105 106 110 113
|
syl21anc |
|
| 115 |
|
cardon |
|
| 116 |
|
cardon |
|
| 117 |
|
onenon |
|
| 118 |
116 117
|
ax-mp |
|
| 119 |
|
cardsdomel |
|
| 120 |
115 118 119
|
mp2an |
|
| 121 |
|
cardidm |
|
| 122 |
121
|
eleq2i |
|
| 123 |
120 122
|
bitri |
|
| 124 |
114 123
|
sylib |
|
| 125 |
|
nnaordr |
|
| 126 |
125
|
biimpa |
|
| 127 |
101 103 103 124 126
|
syl31anc |
|
| 128 |
|
nnacl |
|
| 129 |
102 102 128
|
syl2anc |
|
| 130 |
|
cardnn |
|
| 131 |
129 130
|
syl |
|
| 132 |
131
|
adantl |
|
| 133 |
127 132
|
eleqtrrd |
|
| 134 |
|
cardsdomelir |
|
| 135 |
133 134
|
syl |
|
| 136 |
|
ensdomtr |
|
| 137 |
99 135 136
|
syl2anc |
|
| 138 |
|
cardadju |
|
| 139 |
96 96 138
|
syl2anc |
|
| 140 |
139
|
ensymd |
|
| 141 |
140
|
adantl |
|
| 142 |
|
sdomentr |
|
| 143 |
137 141 142
|
syl2anc |
|
| 144 |
|
domsdomtr |
|
| 145 |
89 143 144
|
sylancr |
|
| 146 |
145
|
expcom |
|
| 147 |
82 146
|
syl |
|
| 148 |
|
sdomentr |
|
| 149 |
148
|
expcom |
|
| 150 |
72 147 149
|
sylsyld |
|
| 151 |
38 150
|
syld |
|
| 152 |
151
|
ex |
|
| 153 |
152
|
com23 |
|
| 154 |
6 12 18 32 153
|
finds1 |
|
| 155 |
154
|
imp |
|