Metamath Proof Explorer


Theorem qaa

Description: Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion qaa A A 𝔸

Proof

Step Hyp Ref Expression
1 qcn A A
2 qsscn
3 1z 1
4 zq 1 1
5 3 4 ax-mp 1
6 plyid 1 X p Poly
7 2 5 6 mp2an X p Poly
8 7 a1i A X p Poly
9 plyconst A × A Poly
10 2 9 mpan A × A Poly
11 qaddcl x y x + y
12 11 adantl A x y x + y
13 qmulcl x y x y
14 13 adantl A x y x y
15 qnegcl 1 1
16 5 15 ax-mp 1
17 16 a1i A 1
18 8 10 12 14 17 plysub A X p f × A Poly
19 peano2cn A A + 1
20 1 19 syl A A + 1
21 fnresi I Fn
22 df-idp X p = I
23 22 fneq1i X p Fn I Fn
24 21 23 mpbir X p Fn
25 24 a1i A X p Fn
26 fnconstg A × A Fn
27 cnex V
28 27 a1i A V
29 inidm =
30 22 fveq1i X p A + 1 = I A + 1
31 fvresi A + 1 I A + 1 = A + 1
32 30 31 syl5eq A + 1 X p A + 1 = A + 1
33 32 adantl A A + 1 X p A + 1 = A + 1
34 fvconst2g A A + 1 × A A + 1 = A
35 25 26 28 28 29 33 34 ofval A A + 1 X p f × A A + 1 = A + 1 - A
36 20 35 mpdan A X p f × A A + 1 = A + 1 - A
37 ax-1cn 1
38 pncan2 A 1 A + 1 - A = 1
39 1 37 38 sylancl A A + 1 - A = 1
40 36 39 eqtrd A X p f × A A + 1 = 1
41 ax-1ne0 1 0
42 41 a1i A 1 0
43 40 42 eqnetrd A X p f × A A + 1 0
44 ne0p A + 1 X p f × A A + 1 0 X p f × A 0 𝑝
45 20 43 44 syl2anc A X p f × A 0 𝑝
46 eldifsn X p f × A Poly 0 𝑝 X p f × A Poly X p f × A 0 𝑝
47 18 45 46 sylanbrc A X p f × A Poly 0 𝑝
48 22 fveq1i X p A = I A
49 fvresi A I A = A
50 48 49 syl5eq A X p A = A
51 50 adantl A A X p A = A
52 fvconst2g A A × A A = A
53 25 26 28 28 29 51 52 ofval A A X p f × A A = A A
54 1 53 mpdan A X p f × A A = A A
55 1 subidd A A A = 0
56 54 55 eqtrd A X p f × A A = 0
57 fveq1 f = X p f × A f A = X p f × A A
58 57 eqeq1d f = X p f × A f A = 0 X p f × A A = 0
59 58 rspcev X p f × A Poly 0 𝑝 X p f × A A = 0 f Poly 0 𝑝 f A = 0
60 47 56 59 syl2anc A f Poly 0 𝑝 f A = 0
61 elqaa A 𝔸 A f Poly 0 𝑝 f A = 0
62 1 60 61 sylanbrc A A 𝔸