Description: The QQHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | qqhre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubdrg | |
|
2 | 1 | simpri | |
3 | drngring | |
|
4 | f1oi | |
|
5 | f1of1 | |
|
6 | 4 5 | ax-mp | |
7 | zssre | |
|
8 | f1ss | |
|
9 | 6 7 8 | mp2an | |
10 | zrhre | |
|
11 | f1eq1 | |
|
12 | 10 11 | ax-mp | |
13 | 9 12 | mpbir | |
14 | rebase | |
|
15 | eqid | |
|
16 | re0g | |
|
17 | 14 15 16 | zrhchr | |
18 | 13 17 | mpbiri | |
19 | 2 3 18 | mp2b | |
20 | eqid | |
|
21 | 14 20 15 | qqhvval | |
22 | 2 19 21 | mpanl12 | |
23 | f1f | |
|
24 | 13 23 | ax-mp | |
25 | 24 | a1i | |
26 | qnumcl | |
|
27 | 25 26 | ffvelcdmd | |
28 | qdencl | |
|
29 | 28 | nnzd | |
30 | 25 29 | ffvelcdmd | |
31 | 29 | anim1i | |
32 | 14 15 16 | zrhf1ker | |
33 | 2 3 32 | mp2b | |
34 | 13 33 | mpbi | |
35 | 34 | eleq2i | |
36 | ffn | |
|
37 | fniniseg | |
|
38 | 24 36 37 | mp2b | |
39 | fvex | |
|
40 | 39 | elsn | |
41 | 35 38 40 | 3bitr3ri | |
42 | 31 41 | sylibr | |
43 | 28 | nnne0d | |
44 | 43 | adantr | |
45 | 44 | neneqd | |
46 | 42 45 | pm2.65da | |
47 | 46 | neqned | |
48 | redvr | |
|
49 | 27 30 47 48 | syl3anc | |
50 | 10 | fveq1i | |
51 | fvresi | |
|
52 | 50 51 | eqtrid | |
53 | 26 52 | syl | |
54 | 10 | fveq1i | |
55 | fvresi | |
|
56 | 54 55 | eqtrid | |
57 | 29 56 | syl | |
58 | 53 57 | oveq12d | |
59 | qeqnumdivden | |
|
60 | 58 59 | eqtr4d | |
61 | 22 49 60 | 3eqtrd | |
62 | 61 | mpteq2ia | |
63 | 14 20 15 | qqhf | |
64 | 2 19 63 | mp2an | |
65 | 64 | a1i | |
66 | 65 | feqmptd | |
67 | 66 | mptru | |
68 | mptresid | |
|
69 | 62 67 68 | 3eqtr4i | |