Metamath Proof Explorer


Theorem qsdrnglem2

Description: Lemma for qsdrng . (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses qsdrng.0 O=opprR
qsdrng.q Q=R/𝑠R~QGM
qsdrng.r φRNzRing
qsdrng.2 φM2IdealR
qsdrnglem2.1 B=BaseR
qsdrnglem2.q φQDivRing
qsdrnglem2.j φJLIdealR
qsdrnglem2.m φMJ
qsdrnglem2.x φXJM
Assertion qsdrnglem2 φJ=B

Proof

Step Hyp Ref Expression
1 qsdrng.0 O=opprR
2 qsdrng.q Q=R/𝑠R~QGM
3 qsdrng.r φRNzRing
4 qsdrng.2 φM2IdealR
5 qsdrnglem2.1 B=BaseR
6 qsdrnglem2.q φQDivRing
7 qsdrnglem2.j φJLIdealR
8 qsdrnglem2.m φMJ
9 qsdrnglem2.x φXJM
10 nzrring RNzRingRRing
11 3 10 syl φRRing
12 11 ad2antrr φsBinvrQXR~QGM=sR~QGMRRing
13 7 ad2antrr φsBinvrQXR~QGM=sR~QGMJLIdealR
14 12 ringgrpd φsBinvrQXR~QGM=sR~QGMRGrp
15 eqid LIdealR=LIdealR
16 5 15 lidlss JLIdealRJB
17 13 16 syl φsBinvrQXR~QGM=sR~QGMJB
18 simplr φsBinvrQXR~QGM=sR~QGMsB
19 9 eldifad φXJ
20 19 ad2antrr φsBinvrQXR~QGM=sR~QGMXJ
21 eqid R=R
22 15 5 21 lidlmcl RRingJLIdealRsBXJsRXJ
23 12 13 18 20 22 syl22anc φsBinvrQXR~QGM=sR~QGMsRXJ
24 17 23 sseldd φsBinvrQXR~QGM=sR~QGMsRXB
25 eqid 1R=1R
26 5 25 ringidcl RRing1RB
27 12 26 syl φsBinvrQXR~QGM=sR~QGM1RB
28 eqid +R=+R
29 eqid invgR=invgR
30 5 28 29 grpasscan1 RGrpsRXB1RBsRX+RinvgRsRX+R1R=1R
31 14 24 27 30 syl3anc φsBinvrQXR~QGM=sR~QGMsRX+RinvgRsRX+R1R=1R
32 8 ad2antrr φsBinvrQXR~QGM=sR~QGMMJ
33 7 16 syl φJB
34 8 33 sstrd φMB
35 34 ad2antrr φsBinvrQXR~QGM=sR~QGMMB
36 simpr φsBinvrQXR~QGM=sR~QGMinvrQXR~QGM=sR~QGM
37 36 oveq1d φsBinvrQXR~QGM=sR~QGMinvrQXR~QGMQXR~QGM=sR~QGMQXR~QGM
38 eqid BaseQ=BaseQ
39 eqid 0Q=0Q
40 eqid Q=Q
41 eqid 1Q=1Q
42 eqid invrQ=invrQ
43 6 ad2antrr φsBinvrQXR~QGM=sR~QGMQDivRing
44 33 19 sseldd φXB
45 ovex R~QGMV
46 45 ecelqsi XBXR~QGMB/R~QGM
47 44 46 syl φXR~QGMB/R~QGM
48 2 a1i φQ=R/𝑠R~QGM
49 5 a1i φB=BaseR
50 45 a1i φR~QGMV
51 48 49 50 3 qusbas φB/R~QGM=BaseQ
52 47 51 eleqtrd φXR~QGMBaseQ
53 52 ad2antrr φsBinvrQXR~QGM=sR~QGMXR~QGMBaseQ
54 4 2idllidld φMLIdealR
55 15 lidlsubg RRingMLIdealRMSubGrpR
56 11 54 55 syl2anc φMSubGrpR
57 eqid R~QGM=R~QGM
58 5 57 eqger MSubGrpRR~QGMErB
59 56 58 syl φR~QGMErB
60 ecref R~QGMErBXBXXR~QGM
61 59 44 60 syl2anc φXXR~QGM
62 9 eldifbd φ¬XM
63 nelne1 XXR~QGM¬XMXR~QGMM
64 61 62 63 syl2anc φXR~QGMM
65 lidlnsg RRingMLIdealRMNrmSGrpR
66 11 54 65 syl2anc φMNrmSGrpR
67 2 qus0g MNrmSGrpR0Q=M
68 66 67 syl φ0Q=M
69 64 68 neeqtrrd φXR~QGM0Q
70 69 ad2antrr φsBinvrQXR~QGM=sR~QGMXR~QGM0Q
71 38 39 40 41 42 43 53 70 drnginvrld φsBinvrQXR~QGM=sR~QGMinvrQXR~QGMQXR~QGM=1Q
72 4 ad2antrr φsBinvrQXR~QGM=sR~QGMM2IdealR
73 44 ad2antrr φsBinvrQXR~QGM=sR~QGMXB
74 2 5 21 40 12 72 18 73 qusmul2idl φsBinvrQXR~QGM=sR~QGMsR~QGMQXR~QGM=sRXR~QGM
75 37 71 74 3eqtr3rd φsBinvrQXR~QGM=sR~QGMsRXR~QGM=1Q
76 eqid 2IdealR=2IdealR
77 2 76 25 qus1 RRingM2IdealRQRing1RR~QGM=1Q
78 77 simprd RRingM2IdealR1RR~QGM=1Q
79 12 72 78 syl2anc φsBinvrQXR~QGM=sR~QGM1RR~QGM=1Q
80 75 79 eqtr4d φsBinvrQXR~QGM=sR~QGMsRXR~QGM=1RR~QGM
81 56 ad2antrr φsBinvrQXR~QGM=sR~QGMMSubGrpR
82 81 58 syl φsBinvrQXR~QGM=sR~QGMR~QGMErB
83 82 27 erth2 φsBinvrQXR~QGM=sR~QGMsRXR~QGM1RsRXR~QGM=1RR~QGM
84 80 83 mpbird φsBinvrQXR~QGM=sR~QGMsRXR~QGM1R
85 5 29 28 57 eqgval RRingMBsRXR~QGM1RsRXB1RBinvgRsRX+R1RM
86 85 biimpa RRingMBsRXR~QGM1RsRXB1RBinvgRsRX+R1RM
87 86 simp3d RRingMBsRXR~QGM1RinvgRsRX+R1RM
88 12 35 84 87 syl21anc φsBinvrQXR~QGM=sR~QGMinvgRsRX+R1RM
89 32 88 sseldd φsBinvrQXR~QGM=sR~QGMinvgRsRX+R1RJ
90 15 28 lidlacl RRingJLIdealRsRXJinvgRsRX+R1RJsRX+RinvgRsRX+R1RJ
91 12 13 23 89 90 syl22anc φsBinvrQXR~QGM=sR~QGMsRX+RinvgRsRX+R1RJ
92 31 91 eqeltrrd φsBinvrQXR~QGM=sR~QGM1RJ
93 15 5 25 lidl1el RRingJLIdealR1RJJ=B
94 93 biimpa RRingJLIdealR1RJJ=B
95 12 13 92 94 syl21anc φsBinvrQXR~QGM=sR~QGMJ=B
96 38 39 42 6 52 69 drnginvrcld φinvrQXR~QGMBaseQ
97 96 51 eleqtrrd φinvrQXR~QGMB/R~QGM
98 elqsi invrQXR~QGMB/R~QGMsBinvrQXR~QGM=sR~QGM
99 97 98 syl φsBinvrQXR~QGM=sR~QGM
100 95 99 r19.29a φJ=B