Metamath Proof Explorer


Theorem recexsrlem

Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion recexsrlem 0𝑹<𝑹Ax𝑹A𝑹x=1𝑹

Proof

Step Hyp Ref Expression
1 ltrelsr <𝑹𝑹×𝑹
2 1 brel 0𝑹<𝑹A0𝑹𝑹A𝑹
3 2 simprd 0𝑹<𝑹AA𝑹
4 df-nr 𝑹=𝑷×𝑷/~𝑹
5 breq2 yz~𝑹=A0𝑹<𝑹yz~𝑹0𝑹<𝑹A
6 oveq1 yz~𝑹=Ayz~𝑹𝑹x=A𝑹x
7 6 eqeq1d yz~𝑹=Ayz~𝑹𝑹x=1𝑹A𝑹x=1𝑹
8 7 rexbidv yz~𝑹=Ax𝑹yz~𝑹𝑹x=1𝑹x𝑹A𝑹x=1𝑹
9 5 8 imbi12d yz~𝑹=A0𝑹<𝑹yz~𝑹x𝑹yz~𝑹𝑹x=1𝑹0𝑹<𝑹Ax𝑹A𝑹x=1𝑹
10 gt0srpr 0𝑹<𝑹yz~𝑹z<𝑷y
11 ltexpri z<𝑷yw𝑷z+𝑷w=y
12 10 11 sylbi 0𝑹<𝑹yz~𝑹w𝑷z+𝑷w=y
13 recexpr w𝑷v𝑷w𝑷v=1𝑷
14 1pr 1𝑷𝑷
15 addclpr v𝑷1𝑷𝑷v+𝑷1𝑷𝑷
16 14 15 mpan2 v𝑷v+𝑷1𝑷𝑷
17 enrex ~𝑹V
18 17 4 ecopqsi v+𝑷1𝑷𝑷1𝑷𝑷v+𝑷1𝑷1𝑷~𝑹𝑹
19 16 14 18 sylancl v𝑷v+𝑷1𝑷1𝑷~𝑹𝑹
20 19 ad2antlr y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yv+𝑷1𝑷1𝑷~𝑹𝑹
21 16 14 jctir v𝑷v+𝑷1𝑷𝑷1𝑷𝑷
22 21 anim2i y𝑷z𝑷v𝑷y𝑷z𝑷v+𝑷1𝑷𝑷1𝑷𝑷
23 22 adantr y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yy𝑷z𝑷v+𝑷1𝑷𝑷1𝑷𝑷
24 mulsrpr y𝑷z𝑷v+𝑷1𝑷𝑷1𝑷𝑷yz~𝑹𝑹v+𝑷1𝑷1𝑷~𝑹=y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷~𝑹
25 23 24 syl y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yyz~𝑹𝑹v+𝑷1𝑷1𝑷~𝑹=y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷~𝑹
26 oveq1 z+𝑷w=yz+𝑷w𝑷v=y𝑷v
27 26 eqcomd z+𝑷w=yy𝑷v=z+𝑷w𝑷v
28 vex zV
29 vex wV
30 vex vV
31 mulcompr u𝑷f=f𝑷u
32 distrpr u𝑷f+𝑷x=u𝑷f+𝑷u𝑷x
33 28 29 30 31 32 caovdir z+𝑷w𝑷v=z𝑷v+𝑷w𝑷v
34 oveq2 w𝑷v=1𝑷z𝑷v+𝑷w𝑷v=z𝑷v+𝑷1𝑷
35 33 34 eqtrid w𝑷v=1𝑷z+𝑷w𝑷v=z𝑷v+𝑷1𝑷
36 27 35 sylan9eqr w𝑷v=1𝑷z+𝑷w=yy𝑷v=z𝑷v+𝑷1𝑷
37 36 oveq1d w𝑷v=1𝑷z+𝑷w=yy𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷=z𝑷v+𝑷1𝑷+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷
38 ovex z𝑷vV
39 14 elexi 1𝑷V
40 ovex y𝑷1𝑷+𝑷z𝑷1𝑷V
41 addcompr u+𝑷f=f+𝑷u
42 addasspr u+𝑷f+𝑷x=u+𝑷f+𝑷x
43 38 39 40 41 42 caov32 z𝑷v+𝑷1𝑷+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷
44 37 43 eqtrdi w𝑷v=1𝑷z+𝑷w=yy𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷
45 44 oveq1d w𝑷v=1𝑷z+𝑷w=yy𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
46 addasspr z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷+𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
47 45 46 eqtrdi w𝑷v=1𝑷z+𝑷w=yy𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
48 distrpr y𝑷v+𝑷1𝑷=y𝑷v+𝑷y𝑷1𝑷
49 48 oveq1i y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷=y𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷
50 addasspr y𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷=y𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷
51 49 50 eqtri y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷=y𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷
52 51 oveq1i y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷=y𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷
53 distrpr z𝑷v+𝑷1𝑷=z𝑷v+𝑷z𝑷1𝑷
54 53 oveq2i y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷=y𝑷1𝑷+𝑷z𝑷v+𝑷z𝑷1𝑷
55 ovex y𝑷1𝑷V
56 ovex z𝑷1𝑷V
57 55 38 56 41 42 caov12 y𝑷1𝑷+𝑷z𝑷v+𝑷z𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷
58 54 57 eqtri y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷
59 58 oveq1i y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷+𝑷1𝑷+𝑷1𝑷=z𝑷v+𝑷y𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
60 47 52 59 3eqtr4g w𝑷v=1𝑷z+𝑷w=yy𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷=y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
61 mulclpr y𝑷v+𝑷1𝑷𝑷y𝑷v+𝑷1𝑷𝑷
62 16 61 sylan2 y𝑷v𝑷y𝑷v+𝑷1𝑷𝑷
63 mulclpr z𝑷1𝑷𝑷z𝑷1𝑷𝑷
64 14 63 mpan2 z𝑷z𝑷1𝑷𝑷
65 addclpr y𝑷v+𝑷1𝑷𝑷z𝑷1𝑷𝑷y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷𝑷
66 62 64 65 syl2an y𝑷v𝑷z𝑷y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷𝑷
67 66 an32s y𝑷z𝑷v𝑷y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷𝑷
68 mulclpr y𝑷1𝑷𝑷y𝑷1𝑷𝑷
69 14 68 mpan2 y𝑷y𝑷1𝑷𝑷
70 mulclpr z𝑷v+𝑷1𝑷𝑷z𝑷v+𝑷1𝑷𝑷
71 16 70 sylan2 z𝑷v𝑷z𝑷v+𝑷1𝑷𝑷
72 addclpr y𝑷1𝑷𝑷z𝑷v+𝑷1𝑷𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷𝑷
73 69 71 72 syl2an y𝑷z𝑷v𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷𝑷
74 73 anassrs y𝑷z𝑷v𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷𝑷
75 67 74 jca y𝑷z𝑷v𝑷y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷𝑷
76 addclpr 1𝑷𝑷1𝑷𝑷1𝑷+𝑷1𝑷𝑷
77 14 14 76 mp2an 1𝑷+𝑷1𝑷𝑷
78 77 14 pm3.2i 1𝑷+𝑷1𝑷𝑷1𝑷𝑷
79 enreceq y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷𝑷1𝑷+𝑷1𝑷𝑷1𝑷𝑷y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷~𝑹=1𝑷+𝑷1𝑷1𝑷~𝑹y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷=y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
80 75 78 79 sylancl y𝑷z𝑷v𝑷y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷~𝑹=1𝑷+𝑷1𝑷1𝑷~𝑹y𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷+𝑷1𝑷=y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
81 60 80 imbitrrid y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yy𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷~𝑹=1𝑷+𝑷1𝑷1𝑷~𝑹
82 81 imp y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yy𝑷v+𝑷1𝑷+𝑷z𝑷1𝑷y𝑷1𝑷+𝑷z𝑷v+𝑷1𝑷~𝑹=1𝑷+𝑷1𝑷1𝑷~𝑹
83 25 82 eqtrd y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yyz~𝑹𝑹v+𝑷1𝑷1𝑷~𝑹=1𝑷+𝑷1𝑷1𝑷~𝑹
84 df-1r 1𝑹=1𝑷+𝑷1𝑷1𝑷~𝑹
85 83 84 eqtr4di y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yyz~𝑹𝑹v+𝑷1𝑷1𝑷~𝑹=1𝑹
86 oveq2 x=v+𝑷1𝑷1𝑷~𝑹yz~𝑹𝑹x=yz~𝑹𝑹v+𝑷1𝑷1𝑷~𝑹
87 86 eqeq1d x=v+𝑷1𝑷1𝑷~𝑹yz~𝑹𝑹x=1𝑹yz~𝑹𝑹v+𝑷1𝑷1𝑷~𝑹=1𝑹
88 87 rspcev v+𝑷1𝑷1𝑷~𝑹𝑹yz~𝑹𝑹v+𝑷1𝑷1𝑷~𝑹=1𝑹x𝑹yz~𝑹𝑹x=1𝑹
89 20 85 88 syl2anc y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yx𝑹yz~𝑹𝑹x=1𝑹
90 89 exp43 y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yx𝑹yz~𝑹𝑹x=1𝑹
91 90 rexlimdv y𝑷z𝑷v𝑷w𝑷v=1𝑷z+𝑷w=yx𝑹yz~𝑹𝑹x=1𝑹
92 13 91 syl5 y𝑷z𝑷w𝑷z+𝑷w=yx𝑹yz~𝑹𝑹x=1𝑹
93 92 rexlimdv y𝑷z𝑷w𝑷z+𝑷w=yx𝑹yz~𝑹𝑹x=1𝑹
94 12 93 syl5 y𝑷z𝑷0𝑹<𝑹yz~𝑹x𝑹yz~𝑹𝑹x=1𝑹
95 4 9 94 ecoptocl A𝑹0𝑹<𝑹Ax𝑹A𝑹x=1𝑹
96 3 95 mpcom 0𝑹<𝑹Ax𝑹A𝑹x=1𝑹