Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reclimc.f | |
|
reclimc.g | |
||
reclimc.b | |
||
reclimc.c | |
||
reclimc.cne0 | |
||
Assertion | reclimc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reclimc.f | |
|
2 | reclimc.g | |
|
3 | reclimc.b | |
|
4 | reclimc.c | |
|
5 | reclimc.cne0 | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | limccl | |
|
10 | 9 4 | sselid | |
11 | 10 | adantr | |
12 | 3 | eldifad | |
13 | 11 12 | subcld | |
14 | 12 11 | mulcld | |
15 | eldifsni | |
|
16 | 3 15 | syl | |
17 | 5 | adantr | |
18 | 12 11 16 17 | mulne0d | |
19 | 18 | neneqd | |
20 | elsng | |
|
21 | 14 20 | syl | |
22 | 19 21 | mtbird | |
23 | 14 22 | eldifd | |
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | 12 | negcld | |
28 | 1 12 4 | limcmptdm | |
29 | limcrcl | |
|
30 | 4 29 | syl | |
31 | 30 | simp3d | |
32 | 24 28 10 31 | constlimc | |
33 | 1 25 12 4 | neglimc | |
34 | 24 25 26 11 27 32 33 | addlimc | |
35 | 10 | negidd | |
36 | 11 12 | negsubd | |
37 | 36 | mpteq2dva | |
38 | 37 | oveq1d | |
39 | 34 35 38 | 3eltr3d | |
40 | 1 24 7 12 11 4 32 | mullimc | |
41 | 10 10 5 5 | mulne0d | |
42 | 6 7 8 13 23 39 40 41 | 0ellimcdiv | |
43 | 1cnd | |
|
44 | 43 12 43 11 16 17 | divsubdivd | |
45 | 11 | mullidd | |
46 | 12 | mullidd | |
47 | 45 46 | oveq12d | |
48 | 47 | oveq1d | |
49 | 44 48 | eqtr2d | |
50 | 49 | mpteq2dva | |
51 | 50 | oveq1d | |
52 | 42 51 | eleqtrd | |
53 | eqid | |
|
54 | 12 16 | reccld | |
55 | 10 5 | reccld | |
56 | 2 53 28 54 31 55 | ellimcabssub0 | |
57 | 52 56 | mpbird | |