Metamath Proof Explorer


Theorem reclimc

Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses reclimc.f F=xAB
reclimc.g G=xA1B
reclimc.b φxAB0
reclimc.c φCFlimD
reclimc.cne0 φC0
Assertion reclimc φ1CGlimD

Proof

Step Hyp Ref Expression
1 reclimc.f F=xAB
2 reclimc.g G=xA1B
3 reclimc.b φxAB0
4 reclimc.c φCFlimD
5 reclimc.cne0 φC0
6 eqid xACB=xACB
7 eqid xABC=xABC
8 eqid xACBBC=xACBBC
9 limccl FlimD
10 9 4 sselid φC
11 10 adantr φxAC
12 3 eldifad φxAB
13 11 12 subcld φxACB
14 12 11 mulcld φxABC
15 eldifsni B0B0
16 3 15 syl φxAB0
17 5 adantr φxAC0
18 12 11 16 17 mulne0d φxABC0
19 18 neneqd φxA¬BC=0
20 elsng BCBC0BC=0
21 14 20 syl φxABC0BC=0
22 19 21 mtbird φxA¬BC0
23 14 22 eldifd φxABC0
24 eqid xAC=xAC
25 eqid xAB=xAB
26 eqid xAC+B=xAC+B
27 12 negcld φxAB
28 1 12 4 limcmptdm φA
29 limcrcl CFlimDF:domFdomFD
30 4 29 syl φF:domFdomFD
31 30 simp3d φD
32 24 28 10 31 constlimc φCxAClimD
33 1 25 12 4 neglimc φCxABlimD
34 24 25 26 11 27 32 33 addlimc φC+CxAC+BlimD
35 10 negidd φC+C=0
36 11 12 negsubd φxAC+B=CB
37 36 mpteq2dva φxAC+B=xACB
38 37 oveq1d φxAC+BlimD=xACBlimD
39 34 35 38 3eltr3d φ0xACBlimD
40 1 24 7 12 11 4 32 mullimc φCCxABClimD
41 10 10 5 5 mulne0d φCC0
42 6 7 8 13 23 39 40 41 0ellimcdiv φ0xACBBClimD
43 1cnd φxA1
44 43 12 43 11 16 17 divsubdivd φxA1B1C=1C1BBC
45 11 mullidd φxA1C=C
46 12 mullidd φxA1B=B
47 45 46 oveq12d φxA1C1B=CB
48 47 oveq1d φxA1C1BBC=CBBC
49 44 48 eqtr2d φxACBBC=1B1C
50 49 mpteq2dva φxACBBC=xA1B1C
51 50 oveq1d φxACBBClimD=xA1B1ClimD
52 42 51 eleqtrd φ0xA1B1ClimD
53 eqid xA1B1C=xA1B1C
54 12 16 reccld φxA1B
55 10 5 reccld φ1C
56 2 53 28 54 31 55 ellimcabssub0 φ1CGlimD0xA1B1ClimD
57 52 56 mpbird φ1CGlimD