Metamath Proof Explorer


Theorem resqrex

Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion resqrex A0Ax0xx2=A

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0A0A0<A0=A
3 1 2 mpan A0A0<A0=A
4 elrp A+A0<A
5 01sqrex A+A1x+x1x2=A
6 rprege0 x+x0x
7 6 anim1i x+x2=Ax0xx2=A
8 anass x0xx2=Ax0xx2=A
9 7 8 sylib x+x2=Ax0xx2=A
10 9 adantrl x+x1x2=Ax0xx2=A
11 10 reximi2 x+x1x2=Ax0xx2=A
12 5 11 syl A+A1x0xx2=A
13 4 12 sylanbr A0<AA1x0xx2=A
14 13 exp31 A0<AA1x0xx2=A
15 sq0 02=0
16 id 0=A0=A
17 15 16 eqtrid 0=A02=A
18 0le0 00
19 17 18 jctil 0=A0002=A
20 breq2 x=00x00
21 oveq1 x=0x2=02
22 21 eqeq1d x=0x2=A02=A
23 20 22 anbi12d x=00xx2=A0002=A
24 23 rspcev 00002=Ax0xx2=A
25 1 19 24 sylancr 0=Ax0xx2=A
26 25 a1i13 A0=AA1x0xx2=A
27 14 26 jaod A0<A0=AA1x0xx2=A
28 3 27 sylbid A0AA1x0xx2=A
29 28 imp A0AA1x0xx2=A
30 0lt1 0<1
31 1re 1
32 ltletr 01A0<11A0<A
33 1 31 32 mp3an12 A0<11A0<A
34 30 33 mpani A1A0<A
35 34 imp A1A0<A
36 4 biimpri A0<AA+
37 35 36 syldan A1AA+
38 37 rpreccld A1A1A+
39 simpr A1A1A
40 lerec 10<1A0<A1A1A11
41 31 30 40 mpanl12 A0<A1A1A11
42 35 41 syldan A1A1A1A11
43 39 42 mpbid A1A1A11
44 1div1e1 11=1
45 43 44 breqtrdi A1A1A1
46 01sqrex 1A+1A1y+y1y2=1A
47 38 45 46 syl2anc A1Ay+y1y2=1A
48 rpre y+y
49 48 3ad2ant2 A1Ay+y1y2=1Ay
50 rpgt0 y+0<y
51 50 3ad2ant2 A1Ay+y1y2=1A0<y
52 gt0ne0 y0<yy0
53 rereccl yy01y
54 52 53 syldan y0<y1y
55 49 51 54 syl2anc A1Ay+y1y2=1A1y
56 recgt0 y0<y0<1y
57 ltle 01y0<1y01y
58 1 57 mpan 1y0<1y01y
59 54 56 58 sylc y0<y01y
60 49 51 59 syl2anc A1Ay+y1y2=1A01y
61 recn yy
62 61 adantr y0<yy
63 62 52 sqrecd y0<y1y2=1y2
64 49 51 63 syl2anc A1Ay+y1y2=1A1y2=1y2
65 simp3r A1Ay+y1y2=1Ay2=1A
66 65 oveq2d A1Ay+y1y2=1A1y2=11A
67 recn AA
68 gt0ne0 A0<AA0
69 35 68 syldan A1AA0
70 recrec AA011A=A
71 67 69 70 syl2an2r A1A11A=A
72 71 3ad2ant1 A1Ay+y1y2=1A11A=A
73 64 66 72 3eqtrd A1Ay+y1y2=1A1y2=A
74 breq2 x=1y0x01y
75 oveq1 x=1yx2=1y2
76 75 eqeq1d x=1yx2=A1y2=A
77 74 76 anbi12d x=1y0xx2=A01y1y2=A
78 77 rspcev 1y01y1y2=Ax0xx2=A
79 55 60 73 78 syl12anc A1Ay+y1y2=1Ax0xx2=A
80 79 rexlimdv3a A1Ay+y1y2=1Ax0xx2=A
81 47 80 mpd A1Ax0xx2=A
82 81 ex A1Ax0xx2=A
83 82 adantr A0A1Ax0xx2=A
84 simpl A0AA
85 letric A1A11A
86 84 31 85 sylancl A0AA11A
87 29 83 86 mpjaod A0Ax0xx2=A