Metamath Proof Explorer


Theorem rhmmpl

Description: Provide a ring homomorphism between two polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. Compare pwsco2rhm . TODO: Currently mhmvlin would have to be moved up. Investigate the usefulness of surrounding theorems like mndvcl and the difference between mhmvlin , ofco , and ofco2 . (Contributed by SN, 8-Feb-2025)

Ref Expression
Hypotheses rhmmpl.p P=ImPolyR
rhmmpl.q Q=ImPolyS
rhmmpl.b B=BaseP
rhmmpl.f F=pBHp
rhmmpl.i φIV
rhmmpl.h φHRRingHomS
Assertion rhmmpl φFPRingHomQ

Proof

Step Hyp Ref Expression
1 rhmmpl.p P=ImPolyR
2 rhmmpl.q Q=ImPolyS
3 rhmmpl.b B=BaseP
4 rhmmpl.f F=pBHp
5 rhmmpl.i φIV
6 rhmmpl.h φHRRingHomS
7 eqid 1P=1P
8 eqid 1Q=1Q
9 eqid P=P
10 eqid Q=Q
11 rhmrcl1 HRRingHomSRRing
12 6 11 syl φRRing
13 1 5 12 mplringd φPRing
14 rhmrcl2 HRRingHomSSRing
15 6 14 syl φSRing
16 2 5 15 mplringd φQRing
17 eqid f0I|f-1Fin=f0I|f-1Fin
18 eqid 0R=0R
19 eqid 1R=1R
20 1 17 18 19 7 5 12 mpl1 φ1P=df0I|f-1Finifd=I×01R0R
21 20 coeq2d φH1P=Hdf0I|f-1Finifd=I×01R0R
22 eqid BaseR=BaseR
23 eqid BaseS=BaseS
24 22 23 rhmf HRRingHomSH:BaseRBaseS
25 6 24 syl φH:BaseRBaseS
26 22 19 ringidcl RRing1RBaseR
27 12 26 syl φ1RBaseR
28 22 18 ring0cl RRing0RBaseR
29 12 28 syl φ0RBaseR
30 27 29 ifcld φifd=I×01R0RBaseR
31 30 adantr φdf0I|f-1Finifd=I×01R0RBaseR
32 25 31 cofmpt φHdf0I|f-1Finifd=I×01R0R=df0I|f-1FinHifd=I×01R0R
33 fvif Hifd=I×01R0R=ifd=I×0H1RH0R
34 eqid 1S=1S
35 19 34 rhm1 HRRingHomSH1R=1S
36 6 35 syl φH1R=1S
37 rhmghm HRRingHomSHRGrpHomS
38 eqid 0S=0S
39 18 38 ghmid HRGrpHomSH0R=0S
40 6 37 39 3syl φH0R=0S
41 36 40 ifeq12d φifd=I×0H1RH0R=ifd=I×01S0S
42 33 41 eqtrid φHifd=I×01R0R=ifd=I×01S0S
43 42 mpteq2dv φdf0I|f-1FinHifd=I×01R0R=df0I|f-1Finifd=I×01S0S
44 21 32 43 3eqtrd φH1P=df0I|f-1Finifd=I×01S0S
45 coeq2 p=1PHp=H1P
46 3 7 ringidcl PRing1PB
47 13 46 syl φ1PB
48 6 47 coexd φH1PV
49 4 45 47 48 fvmptd3 φF1P=H1P
50 2 17 38 34 8 5 15 mpl1 φ1Q=df0I|f-1Finifd=I×01S0S
51 44 49 50 3eqtr4d φF1P=1Q
52 eqid BaseQ=BaseQ
53 5 adantr φxByBIV
54 6 adantr φxByBHRRingHomS
55 simprl φxByBxB
56 simprr φxByByB
57 1 2 3 52 9 10 53 54 55 56 rhmcomulmpl φxByBHxPy=HxQHy
58 coeq2 p=xPyHp=HxPy
59 13 adantr φxByBPRing
60 3 9 59 55 56 ringcld φxByBxPyB
61 ovexd φxByBxPyV
62 54 61 coexd φxByBHxPyV
63 4 58 60 62 fvmptd3 φxByBFxPy=HxPy
64 coeq2 p=xHp=Hx
65 54 55 coexd φxByBHxV
66 4 64 55 65 fvmptd3 φxByBFx=Hx
67 coeq2 p=yHp=Hy
68 54 56 coexd φxByBHyV
69 4 67 56 68 fvmptd3 φxByBFy=Hy
70 66 69 oveq12d φxByBFxQFy=HxQHy
71 57 63 70 3eqtr4d φxByBFxPy=FxQFy
72 eqid +P=+P
73 eqid +Q=+Q
74 5 adantr φpBIV
75 ghmmhm HRGrpHomSHRMndHomS
76 6 37 75 3syl φHRMndHomS
77 76 adantr φpBHRMndHomS
78 simpr φpBpB
79 1 2 3 52 74 77 78 mhmcompl φpBHpBaseQ
80 79 4 fmptd φF:BBaseQ
81 76 adantr φxByBHRMndHomS
82 1 2 3 52 72 73 53 81 55 56 mhmcoaddmpl φxByBHx+Py=Hx+QHy
83 coeq2 p=x+PyHp=Hx+Py
84 13 ringgrpd φPGrp
85 84 adantr φxByBPGrp
86 3 72 85 55 56 grpcld φxByBx+PyB
87 ovexd φxByBx+PyV
88 54 87 coexd φxByBHx+PyV
89 4 83 86 88 fvmptd3 φxByBFx+Py=Hx+Py
90 66 69 oveq12d φxByBFx+QFy=Hx+QHy
91 82 89 90 3eqtr4d φxByBFx+Py=Fx+QFy
92 3 7 8 9 10 13 16 51 71 52 72 73 80 91 isrhmd φFPRingHomQ