Metamath Proof Explorer


Theorem rhmsscrnghm

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020)

Ref Expression
Hypotheses rhmsscrnghm.u φUV
rhmsscrnghm.r φR=RingU
rhmsscrnghm.s φS=RngU
Assertion rhmsscrnghm φRingHomR×RcatRngHomoS×S

Proof

Step Hyp Ref Expression
1 rhmsscrnghm.u φUV
2 rhmsscrnghm.r φR=RingU
3 rhmsscrnghm.s φS=RngU
4 ringrng rRingrRng
5 4 a1i φrRingrRng
6 5 ssrdv φRingRng
7 6 ssrind φRingURngU
8 7 2 3 3sstr4d φRS
9 ovres xRyRxRingHomR×Ry=xRingHomy
10 9 adantl φxRyRxRingHomR×Ry=xRingHomy
11 10 eleq2d φxRyRhxRingHomR×RyhxRingHomy
12 rhmisrnghm hxRingHomyhxRngHomoy
13 8 sseld φxRxS
14 8 sseld φyRyS
15 13 14 anim12d φxRyRxSyS
16 15 imp φxRyRxSyS
17 ovres xSySxRngHomoS×Sy=xRngHomoy
18 16 17 syl φxRyRxRngHomoS×Sy=xRngHomoy
19 18 eleq2d φxRyRhxRngHomoS×SyhxRngHomoy
20 12 19 imbitrrid φxRyRhxRingHomyhxRngHomoS×Sy
21 11 20 sylbid φxRyRhxRingHomR×RyhxRngHomoS×Sy
22 21 ssrdv φxRyRxRingHomR×RyxRngHomoS×Sy
23 22 ralrimivva φxRyRxRingHomR×RyxRngHomoS×Sy
24 inss1 RingURing
25 2 24 eqsstrdi φRRing
26 xpss12 RRingRRingR×RRing×Ring
27 25 25 26 syl2anc φR×RRing×Ring
28 rhmfn RingHomFnRing×Ring
29 fnssresb RingHomFnRing×RingRingHomR×RFnR×RR×RRing×Ring
30 28 29 mp1i φRingHomR×RFnR×RR×RRing×Ring
31 27 30 mpbird φRingHomR×RFnR×R
32 inss1 RngURng
33 3 32 eqsstrdi φSRng
34 xpss12 SRngSRngS×SRng×Rng
35 33 33 34 syl2anc φS×SRng×Rng
36 rnghmfn RngHomoFnRng×Rng
37 fnssresb RngHomoFnRng×RngRngHomoS×SFnS×SS×SRng×Rng
38 36 37 mp1i φRngHomoS×SFnS×SS×SRng×Rng
39 35 38 mpbird φRngHomoS×SFnS×S
40 incom RngU=URng
41 inex1g UVURngV
42 40 41 eqeltrid UVRngUV
43 1 42 syl φRngUV
44 3 43 eqeltrd φSV
45 31 39 44 isssc φRingHomR×RcatRngHomoS×SRSxRyRxRingHomR×RyxRngHomoS×Sy
46 8 23 45 mpbir2and φRingHomR×RcatRngHomoS×S