Metamath Proof Explorer


Theorem rlimcn3

Description: Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 . (Contributed by SN, 27-Sep-2024)

Ref Expression
Hypotheses rlimcn3.1a φ z A B X
rlimcn3.1b φ z A C Y
rlimcn3.1c φ z A B F C
rlimcn3.2 φ R F S
rlimcn3.3a φ z A B R
rlimcn3.3b φ z A C S
rlimcn3.4 φ x + r + s + u X v Y u R < r v S < s u F v R F S < x
Assertion rlimcn3 φ z A B F C R F S

Proof

Step Hyp Ref Expression
1 rlimcn3.1a φ z A B X
2 rlimcn3.1b φ z A C Y
3 rlimcn3.1c φ z A B F C
4 rlimcn3.2 φ R F S
5 rlimcn3.3a φ z A B R
6 rlimcn3.3b φ z A C S
7 rlimcn3.4 φ x + r + s + u X v Y u R < r v S < s u F v R F S < x
8 1 ralrimiva φ z A B X
9 8 adantr φ r + s + z A B X
10 simprl φ r + s + r +
11 5 adantr φ r + s + z A B R
12 9 10 11 rlimi φ r + s + a z A a z B R < r
13 2 ralrimiva φ z A C Y
14 13 adantr φ r + s + z A C Y
15 simprr φ r + s + s +
16 6 adantr φ r + s + z A C S
17 14 15 16 rlimi φ r + s + b z A b z C S < s
18 reeanv a b z A a z B R < r z A b z C S < s a z A a z B R < r b z A b z C S < s
19 r19.26 z A a z B R < r b z C S < s z A a z B R < r z A b z C S < s
20 anim12 a z B R < r b z C S < s a z b z B R < r C S < s
21 simplrl φ r + s + a b z A a
22 simplrr φ r + s + a b z A b
23 eqid z A B = z A B
24 23 1 dmmptd φ dom z A B = A
25 rlimss z A B R dom z A B
26 5 25 syl φ dom z A B
27 24 26 eqsstrrd φ A
28 27 ad2antrr φ r + s + a b A
29 28 sselda φ r + s + a b z A z
30 maxle a b z if a b b a z a z b z
31 21 22 29 30 syl3anc φ r + s + a b z A if a b b a z a z b z
32 31 imbi1d φ r + s + a b z A if a b b a z B R < r C S < s a z b z B R < r C S < s
33 20 32 syl5ibr φ r + s + a b z A a z B R < r b z C S < s if a b b a z B R < r C S < s
34 33 ralimdva φ r + s + a b z A a z B R < r b z C S < s z A if a b b a z B R < r C S < s
35 ifcl b a if a b b a
36 35 ancoms a b if a b b a
37 36 ad2antlr φ r + s + a b u X v Y u R < r v S < s u F v R F S < x if a b b a
38 1 adantlr φ r + s + z A B X
39 2 adantlr φ r + s + z A C Y
40 38 39 jca φ r + s + z A B X C Y
41 fvoveq1 u = B u R = B R
42 41 breq1d u = B u R < r B R < r
43 42 anbi1d u = B u R < r v S < s B R < r v S < s
44 oveq1 u = B u F v = B F v
45 44 fvoveq1d u = B u F v R F S = B F v R F S
46 45 breq1d u = B u F v R F S < x B F v R F S < x
47 43 46 imbi12d u = B u R < r v S < s u F v R F S < x B R < r v S < s B F v R F S < x
48 fvoveq1 v = C v S = C S
49 48 breq1d v = C v S < s C S < s
50 49 anbi2d v = C B R < r v S < s B R < r C S < s
51 oveq2 v = C B F v = B F C
52 51 fvoveq1d v = C B F v R F S = B F C R F S
53 52 breq1d v = C B F v R F S < x B F C R F S < x
54 50 53 imbi12d v = C B R < r v S < s B F v R F S < x B R < r C S < s B F C R F S < x
55 47 54 rspc2va B X C Y u X v Y u R < r v S < s u F v R F S < x B R < r C S < s B F C R F S < x
56 40 55 sylan φ r + s + z A u X v Y u R < r v S < s u F v R F S < x B R < r C S < s B F C R F S < x
57 56 imim2d φ r + s + z A u X v Y u R < r v S < s u F v R F S < x if a b b a z B R < r C S < s if a b b a z B F C R F S < x
58 57 an32s φ r + s + u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s if a b b a z B F C R F S < x
59 58 ralimdva φ r + s + u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s z A if a b b a z B F C R F S < x
60 59 adantlr φ r + s + a b u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s z A if a b b a z B F C R F S < x
61 breq1 c = if a b b a c z if a b b a z
62 61 rspceaimv if a b b a z A if a b b a z B F C R F S < x c z A c z B F C R F S < x
63 37 60 62 syl6an φ r + s + a b u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s c z A c z B F C R F S < x
64 63 ex φ r + s + a b u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s c z A c z B F C R F S < x
65 64 com23 φ r + s + a b z A if a b b a z B R < r C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
66 34 65 syld φ r + s + a b z A a z B R < r b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
67 19 66 syl5bir φ r + s + a b z A a z B R < r z A b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
68 67 rexlimdvva φ r + s + a b z A a z B R < r z A b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
69 18 68 syl5bir φ r + s + a z A a z B R < r b z A b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
70 12 17 69 mp2and φ r + s + u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
71 70 rexlimdvva φ r + s + u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
72 71 imp φ r + s + u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
73 7 72 syldan φ x + c z A c z B F C R F S < x
74 73 ralrimiva φ x + c z A c z B F C R F S < x
75 3 ralrimiva φ z A B F C
76 75 27 4 rlim2 φ z A B F C R F S x + c z A c z B F C R F S < x
77 74 76 mpbird φ z A B F C R F S