Metamath Proof Explorer


Theorem rlimcn3

Description: Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 . (Contributed by SN, 27-Sep-2024)

Ref Expression
Hypotheses rlimcn3.1a φzABX
rlimcn3.1b φzACY
rlimcn3.1c φzABFC
rlimcn3.2 φRFS
rlimcn3.3a φzABR
rlimcn3.3b φzACS
rlimcn3.4 φx+r+s+uXvYuR<rvS<suFvRFS<x
Assertion rlimcn3 φzABFCRFS

Proof

Step Hyp Ref Expression
1 rlimcn3.1a φzABX
2 rlimcn3.1b φzACY
3 rlimcn3.1c φzABFC
4 rlimcn3.2 φRFS
5 rlimcn3.3a φzABR
6 rlimcn3.3b φzACS
7 rlimcn3.4 φx+r+s+uXvYuR<rvS<suFvRFS<x
8 1 ralrimiva φzABX
9 8 adantr φr+s+zABX
10 simprl φr+s+r+
11 5 adantr φr+s+zABR
12 9 10 11 rlimi φr+s+azAazBR<r
13 2 ralrimiva φzACY
14 13 adantr φr+s+zACY
15 simprr φr+s+s+
16 6 adantr φr+s+zACS
17 14 15 16 rlimi φr+s+bzAbzCS<s
18 reeanv abzAazBR<rzAbzCS<sazAazBR<rbzAbzCS<s
19 r19.26 zAazBR<rbzCS<szAazBR<rzAbzCS<s
20 anim12 azBR<rbzCS<sazbzBR<rCS<s
21 simplrl φr+s+abzAa
22 simplrr φr+s+abzAb
23 eqid zAB=zAB
24 23 1 dmmptd φdomzAB=A
25 rlimss zABRdomzAB
26 5 25 syl φdomzAB
27 24 26 eqsstrrd φA
28 27 ad2antrr φr+s+abA
29 28 sselda φr+s+abzAz
30 maxle abzifabbazazbz
31 21 22 29 30 syl3anc φr+s+abzAifabbazazbz
32 31 imbi1d φr+s+abzAifabbazBR<rCS<sazbzBR<rCS<s
33 20 32 imbitrrid φr+s+abzAazBR<rbzCS<sifabbazBR<rCS<s
34 33 ralimdva φr+s+abzAazBR<rbzCS<szAifabbazBR<rCS<s
35 ifcl baifabba
36 35 ancoms abifabba
37 36 ad2antlr φr+s+abuXvYuR<rvS<suFvRFS<xifabba
38 1 adantlr φr+s+zABX
39 2 adantlr φr+s+zACY
40 38 39 jca φr+s+zABXCY
41 fvoveq1 u=BuR=BR
42 41 breq1d u=BuR<rBR<r
43 42 anbi1d u=BuR<rvS<sBR<rvS<s
44 oveq1 u=BuFv=BFv
45 44 fvoveq1d u=BuFvRFS=BFvRFS
46 45 breq1d u=BuFvRFS<xBFvRFS<x
47 43 46 imbi12d u=BuR<rvS<suFvRFS<xBR<rvS<sBFvRFS<x
48 fvoveq1 v=CvS=CS
49 48 breq1d v=CvS<sCS<s
50 49 anbi2d v=CBR<rvS<sBR<rCS<s
51 oveq2 v=CBFv=BFC
52 51 fvoveq1d v=CBFvRFS=BFCRFS
53 52 breq1d v=CBFvRFS<xBFCRFS<x
54 50 53 imbi12d v=CBR<rvS<sBFvRFS<xBR<rCS<sBFCRFS<x
55 47 54 rspc2va BXCYuXvYuR<rvS<suFvRFS<xBR<rCS<sBFCRFS<x
56 40 55 sylan φr+s+zAuXvYuR<rvS<suFvRFS<xBR<rCS<sBFCRFS<x
57 56 imim2d φr+s+zAuXvYuR<rvS<suFvRFS<xifabbazBR<rCS<sifabbazBFCRFS<x
58 57 an32s φr+s+uXvYuR<rvS<suFvRFS<xzAifabbazBR<rCS<sifabbazBFCRFS<x
59 58 ralimdva φr+s+uXvYuR<rvS<suFvRFS<xzAifabbazBR<rCS<szAifabbazBFCRFS<x
60 59 adantlr φr+s+abuXvYuR<rvS<suFvRFS<xzAifabbazBR<rCS<szAifabbazBFCRFS<x
61 breq1 c=ifabbaczifabbaz
62 61 rspceaimv ifabbazAifabbazBFCRFS<xczAczBFCRFS<x
63 37 60 62 syl6an φr+s+abuXvYuR<rvS<suFvRFS<xzAifabbazBR<rCS<sczAczBFCRFS<x
64 63 ex φr+s+abuXvYuR<rvS<suFvRFS<xzAifabbazBR<rCS<sczAczBFCRFS<x
65 64 com23 φr+s+abzAifabbazBR<rCS<suXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
66 34 65 syld φr+s+abzAazBR<rbzCS<suXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
67 19 66 biimtrrid φr+s+abzAazBR<rzAbzCS<suXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
68 67 rexlimdvva φr+s+abzAazBR<rzAbzCS<suXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
69 18 68 biimtrrid φr+s+azAazBR<rbzAbzCS<suXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
70 12 17 69 mp2and φr+s+uXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
71 70 rexlimdvva φr+s+uXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
72 71 imp φr+s+uXvYuR<rvS<suFvRFS<xczAczBFCRFS<x
73 7 72 syldan φx+czAczBFCRFS<x
74 73 ralrimiva φx+czAczBFCRFS<x
75 3 ralrimiva φzABFC
76 75 27 4 rlim2 φzABFCRFSx+czAczBFCRFS<x
77 74 76 mpbird φzABFCRFS