Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
elmapi |
|
3 |
|
df-3 |
|
4 |
|
ssid |
|
5 |
3 4
|
jm2.27dlem5 |
|
6 |
|
2nn |
|
7 |
6
|
jm2.27dlem3 |
|
8 |
5 7
|
sselii |
|
9 |
|
ffvelrn |
|
10 |
2 8 9
|
sylancl |
|
11 |
10
|
adantr |
|
12 |
|
3nn |
|
13 |
12
|
jm2.27dlem3 |
|
14 |
|
ffvelrn |
|
15 |
2 13 14
|
sylancl |
|
16 |
15
|
adantr |
|
17 |
|
rmxdiophlem |
|
18 |
1 11 16 17
|
syl3anc |
|
19 |
18
|
pm5.32da |
|
20 |
|
anass |
|
21 |
20
|
rexbii |
|
22 |
|
r19.42v |
|
23 |
21 22
|
bitr2i |
|
24 |
19 23
|
bitrdi |
|
25 |
24
|
rabbiia |
|
26 |
|
3nn0 |
|
27 |
|
vex |
|
28 |
27
|
resex |
|
29 |
|
fvex |
|
30 |
|
df-2 |
|
31 |
30 5
|
jm2.27dlem5 |
|
32 |
|
1nn |
|
33 |
32
|
jm2.27dlem3 |
|
34 |
31 33
|
sselii |
|
35 |
34
|
jm2.27dlem1 |
|
36 |
35
|
eleq1d |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
8
|
jm2.27dlem1 |
|
40 |
35 39
|
oveq12d |
|
41 |
40
|
adantr |
|
42 |
38 41
|
eqeq12d |
|
43 |
37 42
|
anbi12d |
|
44 |
13
|
jm2.27dlem1 |
|
45 |
44
|
oveq1d |
|
46 |
45
|
adantr |
|
47 |
35
|
oveq1d |
|
48 |
47
|
oveq1d |
|
49 |
|
oveq1 |
|
50 |
48 49
|
oveqan12d |
|
51 |
46 50
|
oveq12d |
|
52 |
51
|
eqeq1d |
|
53 |
43 52
|
anbi12d |
|
54 |
28 29 53
|
sbc2ie |
|
55 |
54
|
rabbii |
|
56 |
|
4nn0 |
|
57 |
|
rmydioph |
|
58 |
|
simp1 |
|
59 |
58
|
eleq1d |
|
60 |
|
simp3 |
|
61 |
|
simp2 |
|
62 |
58 61
|
oveq12d |
|
63 |
60 62
|
eqeq12d |
|
64 |
59 63
|
anbi12d |
|
65 |
|
df-4 |
|
66 |
|
ssid |
|
67 |
65 66
|
jm2.27dlem5 |
|
68 |
3 67
|
jm2.27dlem5 |
|
69 |
30 68
|
jm2.27dlem5 |
|
70 |
69 33
|
sselii |
|
71 |
68 7
|
sselii |
|
72 |
|
4nn |
|
73 |
72
|
jm2.27dlem3 |
|
74 |
64 70 71 73
|
rabren3dioph |
|
75 |
56 57 74
|
mp2an |
|
76 |
|
ovex |
|
77 |
67 13
|
sselii |
|
78 |
|
mzpproj |
|
79 |
76 77 78
|
mp2an |
|
80 |
|
2nn0 |
|
81 |
|
mzpexpmpt |
|
82 |
79 80 81
|
mp2an |
|
83 |
|
mzpproj |
|
84 |
76 70 83
|
mp2an |
|
85 |
|
mzpexpmpt |
|
86 |
84 80 85
|
mp2an |
|
87 |
|
1z |
|
88 |
|
mzpconstmpt |
|
89 |
76 87 88
|
mp2an |
|
90 |
|
mzpsubmpt |
|
91 |
86 89 90
|
mp2an |
|
92 |
|
mzpproj |
|
93 |
76 73 92
|
mp2an |
|
94 |
|
mzpexpmpt |
|
95 |
93 80 94
|
mp2an |
|
96 |
|
mzpmulmpt |
|
97 |
91 95 96
|
mp2an |
|
98 |
|
mzpsubmpt |
|
99 |
82 97 98
|
mp2an |
|
100 |
|
eqrabdioph |
|
101 |
56 99 89 100
|
mp3an |
|
102 |
|
anrabdioph |
|
103 |
75 101 102
|
mp2an |
|
104 |
55 103
|
eqeltri |
|
105 |
65
|
rexfrabdioph |
|
106 |
26 104 105
|
mp2an |
|
107 |
25 106
|
eqeltri |
|