Metamath Proof Explorer


Theorem rmxdioph

Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion rmxdioph a013|a12a3=a1Xrma2Dioph3

Proof

Step Hyp Ref Expression
1 simpr a013a12a12
2 elmapi a013a:130
3 df-3 3=2+1
4 ssid 1313
5 3 4 jm2.27dlem5 1213
6 2nn 2
7 6 jm2.27dlem3 212
8 5 7 sselii 213
9 ffvelcdm a:130213a20
10 2 8 9 sylancl a013a20
11 10 adantr a013a12a20
12 3nn 3
13 12 jm2.27dlem3 313
14 ffvelcdm a:130313a30
15 2 13 14 sylancl a013a30
16 15 adantr a013a12a30
17 rmxdiophlem a12a20a30a3=a1Xrma2b0b=a1Yrma2a32a121b2=1
18 1 11 16 17 syl3anc a013a12a3=a1Xrma2b0b=a1Yrma2a32a121b2=1
19 18 pm5.32da a013a12a3=a1Xrma2a12b0b=a1Yrma2a32a121b2=1
20 anass a12b=a1Yrma2a32a121b2=1a12b=a1Yrma2a32a121b2=1
21 20 rexbii b0a12b=a1Yrma2a32a121b2=1b0a12b=a1Yrma2a32a121b2=1
22 r19.42v b0a12b=a1Yrma2a32a121b2=1a12b0b=a1Yrma2a32a121b2=1
23 21 22 bitr2i a12b0b=a1Yrma2a32a121b2=1b0a12b=a1Yrma2a32a121b2=1
24 19 23 bitrdi a013a12a3=a1Xrma2b0a12b=a1Yrma2a32a121b2=1
25 24 rabbiia a013|a12a3=a1Xrma2=a013|b0a12b=a1Yrma2a32a121b2=1
26 3nn0 30
27 vex cV
28 27 resex c13V
29 fvex c4V
30 df-2 2=1+1
31 30 5 jm2.27dlem5 1113
32 1nn 1
33 32 jm2.27dlem3 111
34 31 33 sselii 113
35 34 jm2.27dlem1 a=c13a1=c1
36 35 eleq1d a=c13a12c12
37 36 adantr a=c13b=c4a12c12
38 simpr a=c13b=c4b=c4
39 8 jm2.27dlem1 a=c13a2=c2
40 35 39 oveq12d a=c13a1Yrma2=c1Yrmc2
41 40 adantr a=c13b=c4a1Yrma2=c1Yrmc2
42 38 41 eqeq12d a=c13b=c4b=a1Yrma2c4=c1Yrmc2
43 37 42 anbi12d a=c13b=c4a12b=a1Yrma2c12c4=c1Yrmc2
44 13 jm2.27dlem1 a=c13a3=c3
45 44 oveq1d a=c13a32=c32
46 45 adantr a=c13b=c4a32=c32
47 35 oveq1d a=c13a12=c12
48 47 oveq1d a=c13a121=c121
49 oveq1 b=c4b2=c42
50 48 49 oveqan12d a=c13b=c4a121b2=c121c42
51 46 50 oveq12d a=c13b=c4a32a121b2=c32c121c42
52 51 eqeq1d a=c13b=c4a32a121b2=1c32c121c42=1
53 43 52 anbi12d a=c13b=c4a12b=a1Yrma2a32a121b2=1c12c4=c1Yrmc2c32c121c42=1
54 28 29 53 sbc2ie [˙c13/a]˙[˙c4/b]˙a12b=a1Yrma2a32a121b2=1c12c4=c1Yrmc2c32c121c42=1
55 54 rabbii c014|[˙c13/a]˙[˙c4/b]˙a12b=a1Yrma2a32a121b2=1=c014|c12c4=c1Yrmc2c32c121c42=1
56 4nn0 40
57 rmydioph b013|b12b3=b1Yrmb2Dioph3
58 simp1 b1=c1b2=c2b3=c4b1=c1
59 58 eleq1d b1=c1b2=c2b3=c4b12c12
60 simp3 b1=c1b2=c2b3=c4b3=c4
61 simp2 b1=c1b2=c2b3=c4b2=c2
62 58 61 oveq12d b1=c1b2=c2b3=c4b1Yrmb2=c1Yrmc2
63 60 62 eqeq12d b1=c1b2=c2b3=c4b3=b1Yrmb2c4=c1Yrmc2
64 59 63 anbi12d b1=c1b2=c2b3=c4b12b3=b1Yrmb2c12c4=c1Yrmc2
65 df-4 4=3+1
66 ssid 1414
67 65 66 jm2.27dlem5 1314
68 3 67 jm2.27dlem5 1214
69 30 68 jm2.27dlem5 1114
70 69 33 sselii 114
71 68 7 sselii 214
72 4nn 4
73 72 jm2.27dlem3 414
74 64 70 71 73 rabren3dioph 40b013|b12b3=b1Yrmb2Dioph3c014|c12c4=c1Yrmc2Dioph4
75 56 57 74 mp2an c014|c12c4=c1Yrmc2Dioph4
76 ovex 14V
77 67 13 sselii 314
78 mzpproj 14V314c14c3mzPoly14
79 76 77 78 mp2an c14c3mzPoly14
80 2nn0 20
81 mzpexpmpt c14c3mzPoly1420c14c32mzPoly14
82 79 80 81 mp2an c14c32mzPoly14
83 mzpproj 14V114c14c1mzPoly14
84 76 70 83 mp2an c14c1mzPoly14
85 mzpexpmpt c14c1mzPoly1420c14c12mzPoly14
86 84 80 85 mp2an c14c12mzPoly14
87 1z 1
88 mzpconstmpt 14V1c141mzPoly14
89 76 87 88 mp2an c141mzPoly14
90 mzpsubmpt c14c12mzPoly14c141mzPoly14c14c121mzPoly14
91 86 89 90 mp2an c14c121mzPoly14
92 mzpproj 14V414c14c4mzPoly14
93 76 73 92 mp2an c14c4mzPoly14
94 mzpexpmpt c14c4mzPoly1420c14c42mzPoly14
95 93 80 94 mp2an c14c42mzPoly14
96 mzpmulmpt c14c121mzPoly14c14c42mzPoly14c14c121c42mzPoly14
97 91 95 96 mp2an c14c121c42mzPoly14
98 mzpsubmpt c14c32mzPoly14c14c121c42mzPoly14c14c32c121c42mzPoly14
99 82 97 98 mp2an c14c32c121c42mzPoly14
100 eqrabdioph 40c14c32c121c42mzPoly14c141mzPoly14c014|c32c121c42=1Dioph4
101 56 99 89 100 mp3an c014|c32c121c42=1Dioph4
102 anrabdioph c014|c12c4=c1Yrmc2Dioph4c014|c32c121c42=1Dioph4c014|c12c4=c1Yrmc2c32c121c42=1Dioph4
103 75 101 102 mp2an c014|c12c4=c1Yrmc2c32c121c42=1Dioph4
104 55 103 eqeltri c014|[˙c13/a]˙[˙c4/b]˙a12b=a1Yrma2a32a121b2=1Dioph4
105 65 rexfrabdioph 30c014|[˙c13/a]˙[˙c4/b]˙a12b=a1Yrma2a32a121b2=1Dioph4a013|b0a12b=a1Yrma2a32a121b2=1Dioph3
106 26 104 105 mp2an a013|b0a12b=a1Yrma2a32a121b2=1Dioph3
107 25 106 eqeltri a013|a12a3=a1Xrma2Dioph3