Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
X and Y sequences 5: Diophantine representability of X, ^, _C
rmxdioph
Next ⟩
jm3.1lem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmxdioph
Description:
X is a Diophantine function.
(Contributed by
Stefan O'Rear
, 17-Oct-2014)
Ref
Expression
Assertion
rmxdioph
⊢
a
∈
ℕ
0
1
…
3
|
a
1
∈
ℤ
≥
2
∧
a
3
=
a
1
X
rm
a
2
∈
Dioph
3
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
a
∈
ℕ
0
1
…
3
∧
a
1
∈
ℤ
≥
2
→
a
1
∈
ℤ
≥
2
2
elmapi
⊢
a
∈
ℕ
0
1
…
3
→
a
:
1
…
3
⟶
ℕ
0
3
df-3
⊢
3
=
2
+
1
4
ssid
⊢
1
…
3
⊆
1
…
3
5
3
4
jm2.27dlem5
⊢
1
…
2
⊆
1
…
3
6
2nn
⊢
2
∈
ℕ
7
6
jm2.27dlem3
⊢
2
∈
1
…
2
8
5
7
sselii
⊢
2
∈
1
…
3
9
ffvelcdm
⊢
a
:
1
…
3
⟶
ℕ
0
∧
2
∈
1
…
3
→
a
2
∈
ℕ
0
10
2
8
9
sylancl
⊢
a
∈
ℕ
0
1
…
3
→
a
2
∈
ℕ
0
11
10
adantr
⊢
a
∈
ℕ
0
1
…
3
∧
a
1
∈
ℤ
≥
2
→
a
2
∈
ℕ
0
12
3nn
⊢
3
∈
ℕ
13
12
jm2.27dlem3
⊢
3
∈
1
…
3
14
ffvelcdm
⊢
a
:
1
…
3
⟶
ℕ
0
∧
3
∈
1
…
3
→
a
3
∈
ℕ
0
15
2
13
14
sylancl
⊢
a
∈
ℕ
0
1
…
3
→
a
3
∈
ℕ
0
16
15
adantr
⊢
a
∈
ℕ
0
1
…
3
∧
a
1
∈
ℤ
≥
2
→
a
3
∈
ℕ
0
17
rmxdiophlem
⊢
a
1
∈
ℤ
≥
2
∧
a
2
∈
ℕ
0
∧
a
3
∈
ℕ
0
→
a
3
=
a
1
X
rm
a
2
↔
∃
b
∈
ℕ
0
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
18
1
11
16
17
syl3anc
⊢
a
∈
ℕ
0
1
…
3
∧
a
1
∈
ℤ
≥
2
→
a
3
=
a
1
X
rm
a
2
↔
∃
b
∈
ℕ
0
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
19
18
pm5.32da
⊢
a
∈
ℕ
0
1
…
3
→
a
1
∈
ℤ
≥
2
∧
a
3
=
a
1
X
rm
a
2
↔
a
1
∈
ℤ
≥
2
∧
∃
b
∈
ℕ
0
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
20
anass
⊢
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
↔
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
21
20
rexbii
⊢
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
↔
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
22
r19.42v
⊢
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
↔
a
1
∈
ℤ
≥
2
∧
∃
b
∈
ℕ
0
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
23
21
22
bitr2i
⊢
a
1
∈
ℤ
≥
2
∧
∃
b
∈
ℕ
0
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
↔
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
24
19
23
bitrdi
⊢
a
∈
ℕ
0
1
…
3
→
a
1
∈
ℤ
≥
2
∧
a
3
=
a
1
X
rm
a
2
↔
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
25
24
rabbiia
⊢
a
∈
ℕ
0
1
…
3
|
a
1
∈
ℤ
≥
2
∧
a
3
=
a
1
X
rm
a
2
=
a
∈
ℕ
0
1
…
3
|
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
26
3nn0
⊢
3
∈
ℕ
0
27
vex
⊢
c
∈
V
28
27
resex
⊢
c
↾
1
…
3
∈
V
29
fvex
⊢
c
4
∈
V
30
df-2
⊢
2
=
1
+
1
31
30
5
jm2.27dlem5
⊢
1
…
1
⊆
1
…
3
32
1nn
⊢
1
∈
ℕ
33
32
jm2.27dlem3
⊢
1
∈
1
…
1
34
31
33
sselii
⊢
1
∈
1
…
3
35
34
jm2.27dlem1
⊢
a
=
c
↾
1
…
3
→
a
1
=
c
1
36
35
eleq1d
⊢
a
=
c
↾
1
…
3
→
a
1
∈
ℤ
≥
2
↔
c
1
∈
ℤ
≥
2
37
36
adantr
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
1
∈
ℤ
≥
2
↔
c
1
∈
ℤ
≥
2
38
simpr
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
b
=
c
4
39
8
jm2.27dlem1
⊢
a
=
c
↾
1
…
3
→
a
2
=
c
2
40
35
39
oveq12d
⊢
a
=
c
↾
1
…
3
→
a
1
Y
rm
a
2
=
c
1
Y
rm
c
2
41
40
adantr
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
1
Y
rm
a
2
=
c
1
Y
rm
c
2
42
38
41
eqeq12d
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
b
=
a
1
Y
rm
a
2
↔
c
4
=
c
1
Y
rm
c
2
43
37
42
anbi12d
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
↔
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
44
13
jm2.27dlem1
⊢
a
=
c
↾
1
…
3
→
a
3
=
c
3
45
44
oveq1d
⊢
a
=
c
↾
1
…
3
→
a
3
2
=
c
3
2
46
45
adantr
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
3
2
=
c
3
2
47
35
oveq1d
⊢
a
=
c
↾
1
…
3
→
a
1
2
=
c
1
2
48
47
oveq1d
⊢
a
=
c
↾
1
…
3
→
a
1
2
−
1
=
c
1
2
−
1
49
oveq1
⊢
b
=
c
4
→
b
2
=
c
4
2
50
48
49
oveqan12d
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
1
2
−
1
b
2
=
c
1
2
−
1
c
4
2
51
46
50
oveq12d
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
3
2
−
a
1
2
−
1
b
2
=
c
3
2
−
c
1
2
−
1
c
4
2
52
51
eqeq1d
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
3
2
−
a
1
2
−
1
b
2
=
1
↔
c
3
2
−
c
1
2
−
1
c
4
2
=
1
53
43
52
anbi12d
⊢
a
=
c
↾
1
…
3
∧
b
=
c
4
→
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
↔
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∧
c
3
2
−
c
1
2
−
1
c
4
2
=
1
54
28
29
53
sbc2ie
⊢
[
˙
c
↾
1
…
3
/
a
]
˙
[
˙
c
4
/
b
]
˙
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
↔
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∧
c
3
2
−
c
1
2
−
1
c
4
2
=
1
55
54
rabbii
⊢
c
∈
ℕ
0
1
…
4
|
[
˙
c
↾
1
…
3
/
a
]
˙
[
˙
c
4
/
b
]
˙
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
=
c
∈
ℕ
0
1
…
4
|
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∧
c
3
2
−
c
1
2
−
1
c
4
2
=
1
56
4nn0
⊢
4
∈
ℕ
0
57
rmydioph
⊢
b
∈
ℕ
0
1
…
3
|
b
1
∈
ℤ
≥
2
∧
b
3
=
b
1
Y
rm
b
2
∈
Dioph
3
58
simp1
⊢
b
1
=
c
1
∧
b
2
=
c
2
∧
b
3
=
c
4
→
b
1
=
c
1
59
58
eleq1d
⊢
b
1
=
c
1
∧
b
2
=
c
2
∧
b
3
=
c
4
→
b
1
∈
ℤ
≥
2
↔
c
1
∈
ℤ
≥
2
60
simp3
⊢
b
1
=
c
1
∧
b
2
=
c
2
∧
b
3
=
c
4
→
b
3
=
c
4
61
simp2
⊢
b
1
=
c
1
∧
b
2
=
c
2
∧
b
3
=
c
4
→
b
2
=
c
2
62
58
61
oveq12d
⊢
b
1
=
c
1
∧
b
2
=
c
2
∧
b
3
=
c
4
→
b
1
Y
rm
b
2
=
c
1
Y
rm
c
2
63
60
62
eqeq12d
⊢
b
1
=
c
1
∧
b
2
=
c
2
∧
b
3
=
c
4
→
b
3
=
b
1
Y
rm
b
2
↔
c
4
=
c
1
Y
rm
c
2
64
59
63
anbi12d
⊢
b
1
=
c
1
∧
b
2
=
c
2
∧
b
3
=
c
4
→
b
1
∈
ℤ
≥
2
∧
b
3
=
b
1
Y
rm
b
2
↔
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
65
df-4
⊢
4
=
3
+
1
66
ssid
⊢
1
…
4
⊆
1
…
4
67
65
66
jm2.27dlem5
⊢
1
…
3
⊆
1
…
4
68
3
67
jm2.27dlem5
⊢
1
…
2
⊆
1
…
4
69
30
68
jm2.27dlem5
⊢
1
…
1
⊆
1
…
4
70
69
33
sselii
⊢
1
∈
1
…
4
71
68
7
sselii
⊢
2
∈
1
…
4
72
4nn
⊢
4
∈
ℕ
73
72
jm2.27dlem3
⊢
4
∈
1
…
4
74
64
70
71
73
rabren3dioph
⊢
4
∈
ℕ
0
∧
b
∈
ℕ
0
1
…
3
|
b
1
∈
ℤ
≥
2
∧
b
3
=
b
1
Y
rm
b
2
∈
Dioph
3
→
c
∈
ℕ
0
1
…
4
|
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∈
Dioph
4
75
56
57
74
mp2an
⊢
c
∈
ℕ
0
1
…
4
|
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∈
Dioph
4
76
ovex
⊢
1
…
4
∈
V
77
67
13
sselii
⊢
3
∈
1
…
4
78
mzpproj
⊢
1
…
4
∈
V
∧
3
∈
1
…
4
→
c
∈
ℤ
1
…
4
⟼
c
3
∈
mzPoly
1
…
4
79
76
77
78
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
3
∈
mzPoly
1
…
4
80
2nn0
⊢
2
∈
ℕ
0
81
mzpexpmpt
⊢
c
∈
ℤ
1
…
4
⟼
c
3
∈
mzPoly
1
…
4
∧
2
∈
ℕ
0
→
c
∈
ℤ
1
…
4
⟼
c
3
2
∈
mzPoly
1
…
4
82
79
80
81
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
3
2
∈
mzPoly
1
…
4
83
mzpproj
⊢
1
…
4
∈
V
∧
1
∈
1
…
4
→
c
∈
ℤ
1
…
4
⟼
c
1
∈
mzPoly
1
…
4
84
76
70
83
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
1
∈
mzPoly
1
…
4
85
mzpexpmpt
⊢
c
∈
ℤ
1
…
4
⟼
c
1
∈
mzPoly
1
…
4
∧
2
∈
ℕ
0
→
c
∈
ℤ
1
…
4
⟼
c
1
2
∈
mzPoly
1
…
4
86
84
80
85
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
1
2
∈
mzPoly
1
…
4
87
1z
⊢
1
∈
ℤ
88
mzpconstmpt
⊢
1
…
4
∈
V
∧
1
∈
ℤ
→
c
∈
ℤ
1
…
4
⟼
1
∈
mzPoly
1
…
4
89
76
87
88
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
1
∈
mzPoly
1
…
4
90
mzpsubmpt
⊢
c
∈
ℤ
1
…
4
⟼
c
1
2
∈
mzPoly
1
…
4
∧
c
∈
ℤ
1
…
4
⟼
1
∈
mzPoly
1
…
4
→
c
∈
ℤ
1
…
4
⟼
c
1
2
−
1
∈
mzPoly
1
…
4
91
86
89
90
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
1
2
−
1
∈
mzPoly
1
…
4
92
mzpproj
⊢
1
…
4
∈
V
∧
4
∈
1
…
4
→
c
∈
ℤ
1
…
4
⟼
c
4
∈
mzPoly
1
…
4
93
76
73
92
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
4
∈
mzPoly
1
…
4
94
mzpexpmpt
⊢
c
∈
ℤ
1
…
4
⟼
c
4
∈
mzPoly
1
…
4
∧
2
∈
ℕ
0
→
c
∈
ℤ
1
…
4
⟼
c
4
2
∈
mzPoly
1
…
4
95
93
80
94
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
4
2
∈
mzPoly
1
…
4
96
mzpmulmpt
⊢
c
∈
ℤ
1
…
4
⟼
c
1
2
−
1
∈
mzPoly
1
…
4
∧
c
∈
ℤ
1
…
4
⟼
c
4
2
∈
mzPoly
1
…
4
→
c
∈
ℤ
1
…
4
⟼
c
1
2
−
1
c
4
2
∈
mzPoly
1
…
4
97
91
95
96
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
1
2
−
1
c
4
2
∈
mzPoly
1
…
4
98
mzpsubmpt
⊢
c
∈
ℤ
1
…
4
⟼
c
3
2
∈
mzPoly
1
…
4
∧
c
∈
ℤ
1
…
4
⟼
c
1
2
−
1
c
4
2
∈
mzPoly
1
…
4
→
c
∈
ℤ
1
…
4
⟼
c
3
2
−
c
1
2
−
1
c
4
2
∈
mzPoly
1
…
4
99
82
97
98
mp2an
⊢
c
∈
ℤ
1
…
4
⟼
c
3
2
−
c
1
2
−
1
c
4
2
∈
mzPoly
1
…
4
100
eqrabdioph
⊢
4
∈
ℕ
0
∧
c
∈
ℤ
1
…
4
⟼
c
3
2
−
c
1
2
−
1
c
4
2
∈
mzPoly
1
…
4
∧
c
∈
ℤ
1
…
4
⟼
1
∈
mzPoly
1
…
4
→
c
∈
ℕ
0
1
…
4
|
c
3
2
−
c
1
2
−
1
c
4
2
=
1
∈
Dioph
4
101
56
99
89
100
mp3an
⊢
c
∈
ℕ
0
1
…
4
|
c
3
2
−
c
1
2
−
1
c
4
2
=
1
∈
Dioph
4
102
anrabdioph
⊢
c
∈
ℕ
0
1
…
4
|
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∈
Dioph
4
∧
c
∈
ℕ
0
1
…
4
|
c
3
2
−
c
1
2
−
1
c
4
2
=
1
∈
Dioph
4
→
c
∈
ℕ
0
1
…
4
|
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∧
c
3
2
−
c
1
2
−
1
c
4
2
=
1
∈
Dioph
4
103
75
101
102
mp2an
⊢
c
∈
ℕ
0
1
…
4
|
c
1
∈
ℤ
≥
2
∧
c
4
=
c
1
Y
rm
c
2
∧
c
3
2
−
c
1
2
−
1
c
4
2
=
1
∈
Dioph
4
104
55
103
eqeltri
⊢
c
∈
ℕ
0
1
…
4
|
[
˙
c
↾
1
…
3
/
a
]
˙
[
˙
c
4
/
b
]
˙
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
∈
Dioph
4
105
65
rexfrabdioph
⊢
3
∈
ℕ
0
∧
c
∈
ℕ
0
1
…
4
|
[
˙
c
↾
1
…
3
/
a
]
˙
[
˙
c
4
/
b
]
˙
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
∈
Dioph
4
→
a
∈
ℕ
0
1
…
3
|
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
∈
Dioph
3
106
26
104
105
mp2an
⊢
a
∈
ℕ
0
1
…
3
|
∃
b
∈
ℕ
0
a
1
∈
ℤ
≥
2
∧
b
=
a
1
Y
rm
a
2
∧
a
3
2
−
a
1
2
−
1
b
2
=
1
∈
Dioph
3
107
25
106
eqeltri
⊢
a
∈
ℕ
0
1
…
3
|
a
1
∈
ℤ
≥
2
∧
a
3
=
a
1
X
rm
a
2
∈
Dioph
3