Metamath Proof Explorer


Theorem rpnnen1lem3

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T=n|nk<x
rpnnen1lem.2 F=xksupT<k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem3 xnranFxnx

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T=n|nk<x
2 rpnnen1lem.2 F=xksupT<k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 3 mptex ksupT<kV
6 2 fvmpt2 xksupT<kVFx=ksupT<k
7 5 6 mpan2 xFx=ksupT<k
8 7 fveq1d xFxk=ksupT<kk
9 ovex supT<kV
10 eqid ksupT<k=ksupT<k
11 10 fvmpt2 ksupT<kVksupT<kk=supT<k
12 9 11 mpan2 kksupT<kk=supT<k
13 8 12 sylan9eq xkFxk=supT<k
14 1 reqabi nTnnk<x
15 zre nn
16 15 adantl xknn
17 simpll xknx
18 nnre kk
19 nngt0 k0<k
20 18 19 jca kk0<k
21 20 ad2antlr xknk0<k
22 ltdivmul nxk0<knk<xn<kx
23 16 17 21 22 syl3anc xknnk<xn<kx
24 18 ad2antlr xknk
25 remulcl kxkx
26 24 17 25 syl2anc xknkx
27 ltle nkxn<kxnkx
28 16 26 27 syl2anc xknn<kxnkx
29 23 28 sylbid xknnk<xnkx
30 29 impr xknnk<xnkx
31 14 30 sylan2b xknTnkx
32 31 ralrimiva xknTnkx
33 ssrab2 n|nk<x
34 1 33 eqsstri T
35 zssre
36 34 35 sstri T
37 36 a1i xkT
38 25 ancoms xkkx
39 18 38 sylan2 xkkx
40 btwnz kxnn<kxnkx<n
41 40 simpld kxnn<kx
42 39 41 syl xknn<kx
43 23 rexbidva xknnk<xnn<kx
44 42 43 mpbird xknnk<x
45 rabn0 n|nk<xnnk<x
46 44 45 sylibr xkn|nk<x
47 1 neeq1i Tn|nk<x
48 46 47 sylibr xkT
49 breq2 y=kxnynkx
50 49 ralbidv y=kxnTnynTnkx
51 50 rspcev kxnTnkxynTny
52 39 32 51 syl2anc xkynTny
53 suprleub TTynTnykxsupT<kxnTnkx
54 37 48 52 39 53 syl31anc xksupT<kxnTnkx
55 32 54 mpbird xksupT<kx
56 1 2 rpnnen1lem2 xksupT<
57 56 zred xksupT<
58 simpl xkx
59 20 adantl xkk0<k
60 ledivmul supT<xk0<ksupT<kxsupT<kx
61 57 58 59 60 syl3anc xksupT<kxsupT<kx
62 55 61 mpbird xksupT<kx
63 13 62 eqbrtrd xkFxkx
64 63 ralrimiva xkFxkx
65 1 2 3 4 rpnnen1lem1 xFx
66 4 3 elmap FxFx:
67 65 66 sylib xFx:
68 ffn Fx:FxFn
69 breq1 n=FxknxFxkx
70 69 ralrn FxFnnranFxnxkFxkx
71 67 68 70 3syl xnranFxnxkFxkx
72 64 71 mpbird xnranFxnx