Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpnnen2.1 | |
|
rpnnen2.2 | |
||
rpnnen2.3 | |
||
rpnnen2.4 | |
||
rpnnen2.5 | |
||
rpnnen2.6 | |
||
Assertion | rpnnen2lem10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen2.1 | |
|
2 | rpnnen2.2 | |
|
3 | rpnnen2.3 | |
|
4 | rpnnen2.4 | |
|
5 | rpnnen2.5 | |
|
6 | rpnnen2.6 | |
|
7 | simpr | |
|
8 | 7 6 | sylib | |
9 | eldifi | |
|
10 | ssel2 | |
|
11 | 9 10 | sylan2 | |
12 | 2 4 11 | syl2anc | |
13 | 1 | rpnnen2lem8 | |
14 | 2 12 13 | syl2anc | |
15 | 1z | |
|
16 | nnz | |
|
17 | elfzm11 | |
|
18 | 15 16 17 | sylancr | |
19 | 18 | biimpa | |
20 | 12 19 | sylan | |
21 | 20 | simp3d | |
22 | elfznn | |
|
23 | breq1 | |
|
24 | eleq1w | |
|
25 | eleq1w | |
|
26 | 24 25 | bibi12d | |
27 | 23 26 | imbi12d | |
28 | 27 | rspccva | |
29 | 5 22 28 | syl2an | |
30 | 21 29 | mpd | |
31 | 30 | ifbid | |
32 | 1 | rpnnen2lem1 | |
33 | 2 22 32 | syl2an | |
34 | 1 | rpnnen2lem1 | |
35 | 3 22 34 | syl2an | |
36 | 31 33 35 | 3eqtr4d | |
37 | 36 | sumeq2dv | |
38 | 37 | oveq1d | |
39 | 14 38 | eqtrd | |
40 | 39 | adantr | |
41 | 1 | rpnnen2lem8 | |
42 | 3 12 41 | syl2anc | |
43 | 42 | adantr | |
44 | 8 40 43 | 3eqtr3d | |
45 | 1 | rpnnen2lem6 | |
46 | 2 12 45 | syl2anc | |
47 | 1 | rpnnen2lem6 | |
48 | 3 12 47 | syl2anc | |
49 | fzfid | |
|
50 | 1 | rpnnen2lem2 | |
51 | 3 50 | syl | |
52 | ffvelcdm | |
|
53 | 51 22 52 | syl2an | |
54 | 49 53 | fsumrecl | |
55 | readdcan | |
|
56 | 46 48 54 55 | syl3anc | |
57 | 56 | adantr | |
58 | 44 57 | mpbid | |