Metamath Proof Explorer


Theorem rpnnen2lem10

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypotheses rpnnen2.1 F=x𝒫nifnx13n0
rpnnen2.2 φA
rpnnen2.3 φB
rpnnen2.4 φmAB
rpnnen2.5 φnn<mnAnB
rpnnen2.6 ψkFAk=kFBk
Assertion rpnnen2lem10 φψkmFAk=kmFBk

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 rpnnen2.2 φA
3 rpnnen2.3 φB
4 rpnnen2.4 φmAB
5 rpnnen2.5 φnn<mnAnB
6 rpnnen2.6 ψkFAk=kFBk
7 simpr φψψ
8 7 6 sylib φψkFAk=kFBk
9 eldifi mABmA
10 ssel2 AmAm
11 9 10 sylan2 AmABm
12 2 4 11 syl2anc φm
13 1 rpnnen2lem8 AmkFAk=k=1m1FAk+kmFAk
14 2 12 13 syl2anc φkFAk=k=1m1FAk+kmFAk
15 1z 1
16 nnz mm
17 elfzm11 1mk1m1k1kk<m
18 15 16 17 sylancr mk1m1k1kk<m
19 18 biimpa mk1m1k1kk<m
20 12 19 sylan φk1m1k1kk<m
21 20 simp3d φk1m1k<m
22 elfznn k1m1k
23 breq1 n=kn<mk<m
24 eleq1w n=knAkA
25 eleq1w n=knBkB
26 24 25 bibi12d n=knAnBkAkB
27 23 26 imbi12d n=kn<mnAnBk<mkAkB
28 27 rspccva nn<mnAnBkk<mkAkB
29 5 22 28 syl2an φk1m1k<mkAkB
30 21 29 mpd φk1m1kAkB
31 30 ifbid φk1m1ifkA13k0=ifkB13k0
32 1 rpnnen2lem1 AkFAk=ifkA13k0
33 2 22 32 syl2an φk1m1FAk=ifkA13k0
34 1 rpnnen2lem1 BkFBk=ifkB13k0
35 3 22 34 syl2an φk1m1FBk=ifkB13k0
36 31 33 35 3eqtr4d φk1m1FAk=FBk
37 36 sumeq2dv φk=1m1FAk=k=1m1FBk
38 37 oveq1d φk=1m1FAk+kmFAk=k=1m1FBk+kmFAk
39 14 38 eqtrd φkFAk=k=1m1FBk+kmFAk
40 39 adantr φψkFAk=k=1m1FBk+kmFAk
41 1 rpnnen2lem8 BmkFBk=k=1m1FBk+kmFBk
42 3 12 41 syl2anc φkFBk=k=1m1FBk+kmFBk
43 42 adantr φψkFBk=k=1m1FBk+kmFBk
44 8 40 43 3eqtr3d φψk=1m1FBk+kmFAk=k=1m1FBk+kmFBk
45 1 rpnnen2lem6 AmkmFAk
46 2 12 45 syl2anc φkmFAk
47 1 rpnnen2lem6 BmkmFBk
48 3 12 47 syl2anc φkmFBk
49 fzfid φ1m1Fin
50 1 rpnnen2lem2 BFB:
51 3 50 syl φFB:
52 ffvelcdm FB:kFBk
53 51 22 52 syl2an φk1m1FBk
54 49 53 fsumrecl φk=1m1FBk
55 readdcan kmFAkkmFBkk=1m1FBkk=1m1FBk+kmFAk=k=1m1FBk+kmFBkkmFAk=kmFBk
56 46 48 54 55 syl3anc φk=1m1FBk+kmFAk=k=1m1FBk+kmFBkkmFAk=kmFBk
57 56 adantr φψk=1m1FBk+kmFAk=k=1m1FBk+kmFBkkmFAk=kmFBk
58 44 57 mpbid φψkmFAk=kmFBk