Metamath Proof Explorer


Theorem rrxip

Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses rrxval.r H=msup
rrxbase.b B=BaseH
Assertion rrxip IVfI,gIfldxIfxgx=𝑖H

Proof

Step Hyp Ref Expression
1 rrxval.r H=msup
2 rrxbase.b B=BaseH
3 1 2 rrxprds IVH=toCPreHilfld𝑠I×subringAlgfld𝑠B
4 3 fveq2d IV𝑖H=𝑖toCPreHilfld𝑠I×subringAlgfld𝑠B
5 eqid toCPreHilfld𝑠I×subringAlgfld𝑠B=toCPreHilfld𝑠I×subringAlgfld𝑠B
6 eqid 𝑖fld𝑠I×subringAlgfld𝑠B=𝑖fld𝑠I×subringAlgfld𝑠B
7 5 6 tcphip 𝑖fld𝑠I×subringAlgfld𝑠B=𝑖toCPreHilfld𝑠I×subringAlgfld𝑠B
8 2 fvexi BV
9 eqid fld𝑠I×subringAlgfld𝑠B=fld𝑠I×subringAlgfld𝑠B
10 eqid 𝑖fld𝑠I×subringAlgfld=𝑖fld𝑠I×subringAlgfld
11 9 10 ressip BV𝑖fld𝑠I×subringAlgfld=𝑖fld𝑠I×subringAlgfld𝑠B
12 8 11 ax-mp 𝑖fld𝑠I×subringAlgfld=𝑖fld𝑠I×subringAlgfld𝑠B
13 eqid fld𝑠I×subringAlgfld=fld𝑠I×subringAlgfld
14 refld fldField
15 14 a1i IVfldField
16 snex subringAlgfldV
17 xpexg IVsubringAlgfldVI×subringAlgfldV
18 16 17 mpan2 IVI×subringAlgfldV
19 eqid Basefld𝑠I×subringAlgfld=Basefld𝑠I×subringAlgfld
20 fvex subringAlgfldV
21 20 snnz subringAlgfld
22 dmxp subringAlgflddomI×subringAlgfld=I
23 21 22 ax-mp domI×subringAlgfld=I
24 23 a1i IVdomI×subringAlgfld=I
25 13 15 18 19 24 10 prdsip IV𝑖fld𝑠I×subringAlgfld=fBasefld𝑠I×subringAlgfld,gBasefld𝑠I×subringAlgfldfldxIfx𝑖I×subringAlgfldxgx
26 13 15 18 19 24 prdsbas IVBasefld𝑠I×subringAlgfld=xIBaseI×subringAlgfldx
27 eqidd xIsubringAlgfld=subringAlgfld
28 rebase =Basefld
29 28 eqimssi Basefld
30 29 a1i xIBasefld
31 27 30 srabase xIBasefld=BasesubringAlgfld
32 28 a1i xI=Basefld
33 20 fvconst2 xII×subringAlgfldx=subringAlgfld
34 33 fveq2d xIBaseI×subringAlgfldx=BasesubringAlgfld
35 31 32 34 3eqtr4rd xIBaseI×subringAlgfldx=
36 35 adantl IVxIBaseI×subringAlgfldx=
37 36 ixpeq2dva IVxIBaseI×subringAlgfldx=xI
38 reex V
39 ixpconstg IVVxI=I
40 38 39 mpan2 IVxI=I
41 26 37 40 3eqtrd IVBasefld𝑠I×subringAlgfld=I
42 remulr ×=fld
43 33 30 sraip xIfld=𝑖I×subringAlgfldx
44 42 43 eqtr2id xI𝑖I×subringAlgfldx=×
45 44 oveqd xIfx𝑖I×subringAlgfldxgx=fxgx
46 45 mpteq2ia xIfx𝑖I×subringAlgfldxgx=xIfxgx
47 46 a1i IVxIfx𝑖I×subringAlgfldxgx=xIfxgx
48 47 oveq2d IVfldxIfx𝑖I×subringAlgfldxgx=fldxIfxgx
49 41 41 48 mpoeq123dv IVfBasefld𝑠I×subringAlgfld,gBasefld𝑠I×subringAlgfldfldxIfx𝑖I×subringAlgfldxgx=fI,gIfldxIfxgx
50 25 49 eqtrd IV𝑖fld𝑠I×subringAlgfld=fI,gIfldxIfxgx
51 12 50 eqtr3id IV𝑖fld𝑠I×subringAlgfld𝑠B=fI,gIfldxIfxgx
52 7 51 eqtr3id IV𝑖toCPreHilfld𝑠I×subringAlgfld𝑠B=fI,gIfldxIfxgx
53 4 52 eqtr2d IVfI,gIfldxIfxgx=𝑖H