Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxval.r | |
|
rrxbase.b | |
||
Assertion | rrxip | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | |
|
2 | rrxbase.b | |
|
3 | 1 2 | rrxprds | |
4 | 3 | fveq2d | |
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | tcphip | |
8 | 2 | fvexi | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 10 | ressip | |
12 | 8 11 | ax-mp | |
13 | eqid | |
|
14 | refld | |
|
15 | 14 | a1i | |
16 | snex | |
|
17 | xpexg | |
|
18 | 16 17 | mpan2 | |
19 | eqid | |
|
20 | fvex | |
|
21 | 20 | snnz | |
22 | dmxp | |
|
23 | 21 22 | ax-mp | |
24 | 23 | a1i | |
25 | 13 15 18 19 24 10 | prdsip | |
26 | 13 15 18 19 24 | prdsbas | |
27 | eqidd | |
|
28 | rebase | |
|
29 | 28 | eqimssi | |
30 | 29 | a1i | |
31 | 27 30 | srabase | |
32 | 28 | a1i | |
33 | 20 | fvconst2 | |
34 | 33 | fveq2d | |
35 | 31 32 34 | 3eqtr4rd | |
36 | 35 | adantl | |
37 | 36 | ixpeq2dva | |
38 | reex | |
|
39 | ixpconstg | |
|
40 | 38 39 | mpan2 | |
41 | 26 37 40 | 3eqtrd | |
42 | remulr | |
|
43 | 33 30 | sraip | |
44 | 42 43 | eqtr2id | |
45 | 44 | oveqd | |
46 | 45 | mpteq2ia | |
47 | 46 | a1i | |
48 | 47 | oveq2d | |
49 | 41 41 48 | mpoeq123dv | |
50 | 25 49 | eqtrd | |
51 | 12 50 | eqtr3id | |
52 | 7 51 | eqtr3id | |
53 | 4 52 | eqtr2d | |