Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrxsnicc.1 | |
|
Assertion | rrxsnicc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxsnicc.1 | |
|
2 | ixpfn | |
|
3 | 2 | adantl | |
4 | elmapfn | |
|
5 | 1 4 | syl | |
6 | 5 | adantr | |
7 | simpll | |
|
8 | fveq2 | |
|
9 | 8 8 | oveq12d | |
10 | 9 | cbvixpv | |
11 | 10 | eleq2i | |
12 | 11 | biimpi | |
13 | 12 | ad2antlr | |
14 | simpr | |
|
15 | elmapi | |
|
16 | 1 15 | syl | |
17 | 16 | ffvelcdmda | |
18 | 17 | adantlr | |
19 | 18 18 | iccssred | |
20 | fvixp2 | |
|
21 | 20 | adantll | |
22 | 19 21 | sseldd | |
23 | 22 | rexrd | |
24 | 18 | rexrd | |
25 | iccleub | |
|
26 | 24 24 21 25 | syl3anc | |
27 | iccgelb | |
|
28 | 24 24 21 27 | syl3anc | |
29 | 23 24 26 28 | xrletrid | |
30 | 7 13 14 29 | syl21anc | |
31 | 3 6 30 | eqfnfvd | |
32 | velsn | |
|
33 | 32 | bicomi | |
34 | 33 | biimpi | |
35 | 31 34 | syl | |
36 | 35 | ssd | |
37 | 1 | elexd | |
38 | 16 | ffvelcdmda | |
39 | 38 | leidd | |
40 | 38 38 38 39 39 | eliccd | |
41 | 40 | ralrimiva | |
42 | 37 5 41 | 3jca | |
43 | elixp2 | |
|
44 | 42 43 | sylibr | |
45 | snssg | |
|
46 | 1 45 | syl | |
47 | 44 46 | mpbid | |
48 | 36 47 | eqssd | |