Metamath Proof Explorer


Theorem rrxsnicc

Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis rrxsnicc.1 φAX
Assertion rrxsnicc φkXAkAk=A

Proof

Step Hyp Ref Expression
1 rrxsnicc.1 φAX
2 ixpfn fkXAkAkfFnX
3 2 adantl φfkXAkAkfFnX
4 elmapfn AXAFnX
5 1 4 syl φAFnX
6 5 adantr φfkXAkAkAFnX
7 simpll φfkXAkAkjXφ
8 fveq2 k=jAk=Aj
9 8 8 oveq12d k=jAkAk=AjAj
10 9 cbvixpv kXAkAk=jXAjAj
11 10 eleq2i fkXAkAkfjXAjAj
12 11 biimpi fkXAkAkfjXAjAj
13 12 ad2antlr φfkXAkAkjXfjXAjAj
14 simpr φfkXAkAkjXjX
15 elmapi AXA:X
16 1 15 syl φA:X
17 16 ffvelcdmda φjXAj
18 17 adantlr φfjXAjAjjXAj
19 18 18 iccssred φfjXAjAjjXAjAj
20 fvixp2 fjXAjAjjXfjAjAj
21 20 adantll φfjXAjAjjXfjAjAj
22 19 21 sseldd φfjXAjAjjXfj
23 22 rexrd φfjXAjAjjXfj*
24 18 rexrd φfjXAjAjjXAj*
25 iccleub Aj*Aj*fjAjAjfjAj
26 24 24 21 25 syl3anc φfjXAjAjjXfjAj
27 iccgelb Aj*Aj*fjAjAjAjfj
28 24 24 21 27 syl3anc φfjXAjAjjXAjfj
29 23 24 26 28 xrletrid φfjXAjAjjXfj=Aj
30 7 13 14 29 syl21anc φfkXAkAkjXfj=Aj
31 3 6 30 eqfnfvd φfkXAkAkf=A
32 velsn fAf=A
33 32 bicomi f=AfA
34 33 biimpi f=AfA
35 31 34 syl φfkXAkAkfA
36 35 ssd φkXAkAkA
37 1 elexd φAV
38 16 ffvelcdmda φkXAk
39 38 leidd φkXAkAk
40 38 38 38 39 39 eliccd φkXAkAkAk
41 40 ralrimiva φkXAkAkAk
42 37 5 41 3jca φAVAFnXkXAkAkAk
43 elixp2 AkXAkAkAVAFnXkXAkAkAk
44 42 43 sylibr φAkXAkAk
45 snssg AXAkXAkAkAkXAkAk
46 1 45 syl φAkXAkAkAkXAkAk
47 44 46 mpbid φAkXAkAk
48 36 47 eqssd φkXAkAk=A