Metamath Proof Explorer


Theorem sbgoldbo

Description: If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021)

Ref Expression
Hypothesis sbgoldbo.p P=1
Assertion sbgoldbo nEven4<nnGoldbachEvenn3pPqPrPn=p+q+r

Proof

Step Hyp Ref Expression
1 sbgoldbo.p P=1
2 nfra1 nnEven4<nnGoldbachEven
3 3z 3
4 6nn 6
5 4 nnzi 6
6 3re 3
7 6re 6
8 3lt6 3<6
9 6 7 8 ltleii 36
10 eluz2 633636
11 3 5 9 10 mpbir3an 63
12 uzsplit 633=3616
13 12 eleq2d 63n3n3616
14 11 13 ax-mp n3n3616
15 elun n3616n361n6
16 6m1e5 61=5
17 16 oveq2i 361=35
18 5nn 5
19 18 nnzi 5
20 5re 5
21 3lt5 3<5
22 6 20 21 ltleii 35
23 eluz2 533535
24 3 19 22 23 mpbir3an 53
25 fzopredsuc 5335=33+1..^55
26 24 25 ax-mp 35=33+1..^55
27 17 26 eqtri 361=33+1..^55
28 27 eleq2i n361n33+1..^55
29 elun n33+1..^55n33+1..^5n5
30 elun n33+1..^5n3n3+1..^5
31 elsni n3n=3
32 1ex 1V
33 32 snid 11
34 33 orci 111
35 elun 11111
36 34 35 mpbir 11
37 36 1 eleqtrri 1P
38 37 a1i n=31P
39 simpl n=3p=1n=3
40 oveq1 p=1p+q=1+q
41 40 oveq1d p=1p+q+r=1+q+r
42 41 adantl n=3p=1p+q+r=1+q+r
43 39 42 eqeq12d n=3p=1n=p+q+r3=1+q+r
44 43 2rexbidv n=3p=1qPrPn=p+q+rqPrP3=1+q+r
45 oveq2 q=11+q=1+1
46 45 oveq1d q=11+q+r=1+1+r
47 46 eqeq2d q=13=1+q+r3=1+1+r
48 47 rexbidv q=1rP3=1+q+rrP3=1+1+r
49 48 adantl n=3q=1rP3=1+q+rrP3=1+1+r
50 df-3 3=2+1
51 df-2 2=1+1
52 51 oveq1i 2+1=1+1+1
53 50 52 eqtri 3=1+1+1
54 oveq2 r=11+1+r=1+1+1
55 53 54 eqtr4id r=13=1+1+r
56 55 adantl n=3r=13=1+1+r
57 38 56 rspcedeq2vd n=3rP3=1+1+r
58 38 49 57 rspcedvd n=3qPrP3=1+q+r
59 38 44 58 rspcedvd n=3pPqPrPn=p+q+r
60 31 59 syl n3pPqPrPn=p+q+r
61 3p1e4 3+1=4
62 df-5 5=4+1
63 61 62 oveq12i 3+1..^5=4..^4+1
64 4z 4
65 fzval3 444=4..^4+1
66 64 65 ax-mp 44=4..^4+1
67 63 66 eqtr4i 3+1..^5=44
68 67 eleq2i n3+1..^5n44
69 fzsn 444=4
70 64 69 ax-mp 44=4
71 70 eleq2i n44n4
72 68 71 bitri n3+1..^5n4
73 elsni n4n=4
74 2prm 2
75 74 olci 212
76 elun 21212
77 75 76 mpbir 21
78 77 1 eleqtrri 2P
79 78 a1i n=42P
80 oveq1 p=2p+q=2+q
81 80 oveq1d p=2p+q+r=2+q+r
82 81 eqeq2d p=2n=p+q+rn=2+q+r
83 82 2rexbidv p=2qPrPn=p+q+rqPrPn=2+q+r
84 83 adantl n=4p=2qPrPn=p+q+rqPrPn=2+q+r
85 37 a1i n=41P
86 oveq2 q=12+q=2+1
87 86 oveq1d q=12+q+r=2+1+r
88 87 eqeq2d q=1n=2+q+rn=2+1+r
89 88 rexbidv q=1rPn=2+q+rrPn=2+1+r
90 89 adantl n=4q=1rPn=2+q+rrPn=2+1+r
91 simpl n=4r=1n=4
92 df-4 4=3+1
93 50 oveq1i 3+1=2+1+1
94 92 93 eqtri 4=2+1+1
95 94 a1i n=4r=14=2+1+1
96 oveq2 r=12+1+r=2+1+1
97 96 eqcomd r=12+1+1=2+1+r
98 97 adantl n=4r=12+1+1=2+1+r
99 95 98 eqtrd n=4r=14=2+1+r
100 91 99 eqtrd n=4r=1n=2+1+r
101 85 100 rspcedeq2vd n=4rPn=2+1+r
102 85 90 101 rspcedvd n=4qPrPn=2+q+r
103 79 84 102 rspcedvd n=4pPqPrPn=p+q+r
104 73 103 syl n4pPqPrPn=p+q+r
105 72 104 sylbi n3+1..^5pPqPrPn=p+q+r
106 60 105 jaoi n3n3+1..^5pPqPrPn=p+q+r
107 30 106 sylbi n33+1..^5pPqPrPn=p+q+r
108 elsni n5n=5
109 3prm 3
110 109 olci 313
111 elun 31313
112 110 111 mpbir 31
113 112 1 eleqtrri 3P
114 113 a1i n=53P
115 oveq1 p=3p+q=3+q
116 115 oveq1d p=3p+q+r=3+q+r
117 116 eqeq2d p=3n=p+q+rn=3+q+r
118 117 2rexbidv p=3qPrPn=p+q+rqPrPn=3+q+r
119 118 adantl n=5p=3qPrPn=p+q+rqPrPn=3+q+r
120 37 a1i n=51P
121 oveq2 q=13+q=3+1
122 121 oveq1d q=13+q+r=3+1+r
123 122 eqeq2d q=1n=3+q+rn=3+1+r
124 123 rexbidv q=1rPn=3+q+rrPn=3+1+r
125 124 adantl n=5q=1rPn=3+q+rrPn=3+1+r
126 simpl n=5r=1n=5
127 92 oveq1i 4+1=3+1+1
128 62 127 eqtri 5=3+1+1
129 oveq2 r=13+1+r=3+1+1
130 128 129 eqtr4id r=15=3+1+r
131 130 adantl n=5r=15=3+1+r
132 126 131 eqtrd n=5r=1n=3+1+r
133 120 132 rspcedeq2vd n=5rPn=3+1+r
134 120 125 133 rspcedvd n=5qPrPn=3+q+r
135 114 119 134 rspcedvd n=5pPqPrPn=p+q+r
136 108 135 syl n5pPqPrPn=p+q+r
137 107 136 jaoi n33+1..^5n5pPqPrPn=p+q+r
138 29 137 sylbi n33+1..^55pPqPrPn=p+q+r
139 138 a1d n33+1..^55nEven4<nnGoldbachEvenpPqPrPn=p+q+r
140 28 139 sylbi n361nEven4<nnGoldbachEvenpPqPrPn=p+q+r
141 sbgoldbm nEven4<nnGoldbachEvenn6pqrn=p+q+r
142 rspa n6pqrn=p+q+rn6pqrn=p+q+r
143 ssun2 1
144 143 1 sseqtrri P
145 rexss Ppqrn=p+q+rpPpqrn=p+q+r
146 144 145 ax-mp pqrn=p+q+rpPpqrn=p+q+r
147 rexss Pqrn=p+q+rqPqrn=p+q+r
148 144 147 ax-mp qrn=p+q+rqPqrn=p+q+r
149 rexss Prn=p+q+rrPrn=p+q+r
150 144 149 ax-mp rn=p+q+rrPrn=p+q+r
151 simpr rn=p+q+rn=p+q+r
152 151 reximi rPrn=p+q+rrPn=p+q+r
153 150 152 sylbi rn=p+q+rrPn=p+q+r
154 153 adantl qrn=p+q+rrPn=p+q+r
155 154 reximi qPqrn=p+q+rqPrPn=p+q+r
156 148 155 sylbi qrn=p+q+rqPrPn=p+q+r
157 156 adantl pqrn=p+q+rqPrPn=p+q+r
158 157 reximi pPpqrn=p+q+rpPqPrPn=p+q+r
159 146 158 sylbi pqrn=p+q+rpPqPrPn=p+q+r
160 142 159 syl n6pqrn=p+q+rn6pPqPrPn=p+q+r
161 160 ex n6pqrn=p+q+rn6pPqPrPn=p+q+r
162 141 161 syl nEven4<nnGoldbachEvenn6pPqPrPn=p+q+r
163 162 com12 n6nEven4<nnGoldbachEvenpPqPrPn=p+q+r
164 140 163 jaoi n361n6nEven4<nnGoldbachEvenpPqPrPn=p+q+r
165 15 164 sylbi n3616nEven4<nnGoldbachEvenpPqPrPn=p+q+r
166 165 com12 nEven4<nnGoldbachEvenn3616pPqPrPn=p+q+r
167 14 166 biimtrid nEven4<nnGoldbachEvenn3pPqPrPn=p+q+r
168 2 167 ralrimi nEven4<nnGoldbachEvenn3pPqPrPn=p+q+r