Metamath Proof Explorer


Theorem selvval2lem4

Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvval2lem4.p P = I mPoly R
selvval2lem4.b B = Base P
selvval2lem4.u U = I J mPoly R
selvval2lem4.t T = J mPoly U
selvval2lem4.c C = algSc T
selvval2lem4.d D = C algSc U
selvval2lem4.s S = T 𝑠 ran D
selvval2lem4.w W = I mPoly S
selvval2lem4.x X = Base W
selvval2lem4.i φ I V
selvval2lem4.r φ R CRing
selvval2lem4.j φ J I
selvval2lem4.f φ F B
Assertion selvval2lem4 φ D F X

Proof

Step Hyp Ref Expression
1 selvval2lem4.p P = I mPoly R
2 selvval2lem4.b B = Base P
3 selvval2lem4.u U = I J mPoly R
4 selvval2lem4.t T = J mPoly U
5 selvval2lem4.c C = algSc T
6 selvval2lem4.d D = C algSc U
7 selvval2lem4.s S = T 𝑠 ran D
8 selvval2lem4.w W = I mPoly S
9 selvval2lem4.x X = Base W
10 selvval2lem4.i φ I V
11 selvval2lem4.r φ R CRing
12 selvval2lem4.j φ J I
13 selvval2lem4.f φ F B
14 difexg I V I J V
15 10 14 syl φ I J V
16 10 12 ssexd φ J V
17 3 4 5 6 15 16 11 selvval2lem2 φ D R RingHom T
18 eqid Base R = Base R
19 eqid Base T = Base T
20 18 19 rhmf D R RingHom T D : Base R Base T
21 ffrn D : Base R Base T D : Base R ran D
22 17 20 21 3syl φ D : Base R ran D
23 3 4 5 6 15 16 11 selvval2lem3 φ ran D SubRing T
24 19 subrgss ran D SubRing T ran D Base T
25 7 19 ressbas2 ran D Base T ran D = Base S
26 23 24 25 3syl φ ran D = Base S
27 26 feq3d φ D : Base R ran D D : Base R Base S
28 22 27 mpbid φ D : Base R Base S
29 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
30 1 18 2 29 13 mplelf φ F : f 0 I | f -1 Fin Base R
31 28 30 fcod φ D F : f 0 I | f -1 Fin Base S
32 fvexd φ Base S V
33 ovex 0 I V
34 33 rabex f 0 I | f -1 Fin V
35 34 a1i φ f 0 I | f -1 Fin V
36 32 35 elmapd φ D F Base S f 0 I | f -1 Fin D F : f 0 I | f -1 Fin Base S
37 31 36 mpbird φ D F Base S f 0 I | f -1 Fin
38 eqid I mPwSer S = I mPwSer S
39 eqid Base S = Base S
40 eqid Base I mPwSer S = Base I mPwSer S
41 38 39 29 40 10 psrbas φ Base I mPwSer S = Base S f 0 I | f -1 Fin
42 37 41 eleqtrrd φ D F Base I mPwSer S
43 fvexd φ 0 S V
44 crngring R CRing R Ring
45 eqid 0 R = 0 R
46 18 45 ring0cl R Ring 0 R Base R
47 11 44 46 3syl φ 0 R Base R
48 ssidd φ Base R Base R
49 fvexd φ Base R V
50 1 2 45 13 11 mplelsfi φ finSupp 0 R F
51 6 a1i φ D = C algSc U
52 51 fveq1d φ D 0 R = C algSc U 0 R
53 eqid Base U = Base U
54 eqid algSc U = algSc U
55 11 44 syl φ R Ring
56 3 53 18 54 15 55 mplasclf φ algSc U : Base R Base U
57 56 47 fvco3d φ C algSc U 0 R = C algSc U 0 R
58 3 15 11 mplsca φ R = Scalar U
59 58 fveq2d φ 0 R = 0 Scalar U
60 59 fveq2d φ algSc U 0 R = algSc U 0 Scalar U
61 eqid Scalar U = Scalar U
62 3 mplassa I J V R CRing U AssAlg
63 15 11 62 syl2anc φ U AssAlg
64 assalmod U AssAlg U LMod
65 63 64 syl φ U LMod
66 assaring U AssAlg U Ring
67 63 66 syl φ U Ring
68 54 61 65 67 ascl0 φ algSc U 0 Scalar U = 0 U
69 60 68 eqtrd φ algSc U 0 R = 0 U
70 69 fveq2d φ C algSc U 0 R = C 0 U
71 4 16 63 mplsca φ U = Scalar T
72 71 fveq2d φ 0 U = 0 Scalar T
73 72 fveq2d φ C 0 U = C 0 Scalar T
74 eqid Scalar T = Scalar T
75 3 4 15 16 11 selvval2lem1 φ T AssAlg
76 assalmod T AssAlg T LMod
77 75 76 syl φ T LMod
78 assaring T AssAlg T Ring
79 75 78 syl φ T Ring
80 5 74 77 79 ascl0 φ C 0 Scalar T = 0 T
81 subrgsubg ran D SubRing T ran D SubGrp T
82 eqid 0 T = 0 T
83 7 82 subg0 ran D SubGrp T 0 T = 0 S
84 23 81 83 3syl φ 0 T = 0 S
85 80 84 eqtrd φ C 0 Scalar T = 0 S
86 70 73 85 3eqtrd φ C algSc U 0 R = 0 S
87 52 57 86 3eqtrd φ D 0 R = 0 S
88 43 47 30 22 48 35 49 50 87 fsuppcor φ finSupp 0 S D F
89 eqid 0 S = 0 S
90 8 38 40 89 9 mplelbas D F X D F Base I mPwSer S finSupp 0 S D F
91 42 88 90 sylanbrc φ D F X