Metamath Proof Explorer


Theorem seqcoll2

Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses seqcoll2.1 φkSZ+˙k=k
seqcoll2.1b φkSk+˙Z=k
seqcoll2.c φkSnSk+˙nS
seqcoll2.a φZS
seqcoll2.2 φGIsom<,<1AA
seqcoll2.3 φA
seqcoll2.5 φAMN
seqcoll2.6 φkMNFkS
seqcoll2.7 φkMNAFk=Z
seqcoll2.8 φn1AHn=FGn
Assertion seqcoll2 φseqM+˙FN=seq1+˙HA

Proof

Step Hyp Ref Expression
1 seqcoll2.1 φkSZ+˙k=k
2 seqcoll2.1b φkSk+˙Z=k
3 seqcoll2.c φkSnSk+˙nS
4 seqcoll2.a φZS
5 seqcoll2.2 φGIsom<,<1AA
6 seqcoll2.3 φA
7 seqcoll2.5 φAMN
8 seqcoll2.6 φkMNFkS
9 seqcoll2.7 φkMNAFk=Z
10 seqcoll2.8 φn1AHn=FGn
11 fzssuz MNM
12 isof1o GIsom<,<1AAG:1A1-1 ontoA
13 5 12 syl φG:1A1-1 ontoA
14 f1of G:1A1-1 ontoAG:1AA
15 13 14 syl φG:1AA
16 fzfi MNFin
17 ssfi MNFinAMNAFin
18 16 7 17 sylancr φAFin
19 hasheq0 AFinA=0A=
20 18 19 syl φA=0A=
21 20 necon3bbid φ¬A=0A
22 6 21 mpbird φ¬A=0
23 hashcl AFinA0
24 18 23 syl φA0
25 elnn0 A0AA=0
26 24 25 sylib φAA=0
27 26 ord φ¬AA=0
28 22 27 mt3d φA
29 nnuz =1
30 28 29 eleqtrdi φA1
31 eluzfz2 A1A1A
32 30 31 syl φA1A
33 15 32 ffvelrnd φGAA
34 7 33 sseldd φGAMN
35 11 34 sselid φGAM
36 elfzuz3 GAMNNGA
37 34 36 syl φNGA
38 fzss2 NGAMGAMN
39 37 38 syl φMGAMN
40 39 sselda φkMGAkMN
41 40 8 syldan φkMGAFkS
42 35 41 3 seqcl φseqM+˙FGAS
43 peano2uz GAMGA+1M
44 35 43 syl φGA+1M
45 fzss1 GA+1MGA+1NMN
46 44 45 syl φGA+1NMN
47 46 sselda φkGA+1NkMN
48 eluzelre GAMGA
49 35 48 syl φGA
50 49 adantr φkGA+1NGA
51 peano2re GAGA+1
52 50 51 syl φkGA+1NGA+1
53 elfzelz kGA+1Nk
54 53 zred kGA+1Nk
55 54 adantl φkGA+1Nk
56 50 ltp1d φkGA+1NGA<GA+1
57 elfzle1 kGA+1NGA+1k
58 57 adantl φkGA+1NGA+1k
59 50 52 55 56 58 ltletrd φkGA+1NGA<k
60 13 adantr φkGA+1NkAG:1A1-1 ontoA
61 f1ocnv G:1A1-1 ontoAG-1:A1-1 onto1A
62 60 61 syl φkGA+1NkAG-1:A1-1 onto1A
63 f1of G-1:A1-1 onto1AG-1:A1A
64 62 63 syl φkGA+1NkAG-1:A1A
65 simprr φkGA+1NkAkA
66 64 65 ffvelrnd φkGA+1NkAG-1k1A
67 66 elfzelzd φkGA+1NkAG-1k
68 67 zred φkGA+1NkAG-1k
69 24 adantr φkGA+1NkAA0
70 69 nn0red φkGA+1NkAA
71 elfzle2 G-1k1AG-1kA
72 66 71 syl φkGA+1NkAG-1kA
73 68 70 72 lensymd φkGA+1NkA¬A<G-1k
74 5 adantr φkGA+1NkAGIsom<,<1AA
75 32 adantr φkGA+1NkAA1A
76 isorel GIsom<,<1AAA1AG-1k1AA<G-1kGA<GG-1k
77 74 75 66 76 syl12anc φkGA+1NkAA<G-1kGA<GG-1k
78 f1ocnvfv2 G:1A1-1 ontoAkAGG-1k=k
79 60 65 78 syl2anc φkGA+1NkAGG-1k=k
80 79 breq2d φkGA+1NkAGA<GG-1kGA<k
81 77 80 bitrd φkGA+1NkAA<G-1kGA<k
82 73 81 mtbid φkGA+1NkA¬GA<k
83 82 expr φkGA+1NkA¬GA<k
84 59 83 mt2d φkGA+1N¬kA
85 47 84 eldifd φkGA+1NkMNA
86 85 9 syldan φkGA+1NFk=Z
87 2 35 37 42 86 seqid2 φseqM+˙FGA=seqM+˙FN
88 7 11 sstrdi φAM
89 39 ssdifd φMGAAMNA
90 89 sselda φkMGAAkMNA
91 90 9 syldan φkMGAAFk=Z
92 1 2 3 4 5 32 88 41 91 10 seqcoll φseqM+˙FGA=seq1+˙HA
93 87 92 eqtr3d φseqM+˙FN=seq1+˙HA