Metamath Proof Explorer


Theorem seqof

Description: Distribute function operation through a sequence. Note that G ( z ) is an implicit function on z . (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses seqof.1 φAV
seqof.2 φNM
seqof.3 φxMNFx=zAGx
Assertion seqof φseqMf+˙FN=zAseqM+˙GN

Proof

Step Hyp Ref Expression
1 seqof.1 φAV
2 seqof.2 φNM
3 seqof.3 φxMNFx=zAGx
4 fvex GxV
5 4 rgenw zAGxV
6 eqid zAGx=zAGx
7 6 fnmpt zAGxVzAGxFnA
8 5 7 mp1i φxMNzAGxFnA
9 3 fneq1d φxMNFxFnAzAGxFnA
10 8 9 mpbird φxMNFxFnA
11 fvex FxV
12 fneq1 z=FxzFnAFxFnA
13 11 12 elab Fxz|zFnAFxFnA
14 10 13 sylibr φxMNFxz|zFnA
15 simprl φxFnAyFnAxFnA
16 simprr φxFnAyFnAyFnA
17 1 adantr φxFnAyFnAAV
18 inidm AA=A
19 15 16 17 17 18 offn φxFnAyFnAx+˙fyFnA
20 19 ex φxFnAyFnAx+˙fyFnA
21 vex xV
22 fneq1 z=xzFnAxFnA
23 21 22 elab xz|zFnAxFnA
24 vex yV
25 fneq1 z=yzFnAyFnA
26 24 25 elab yz|zFnAyFnA
27 23 26 anbi12i xz|zFnAyz|zFnAxFnAyFnA
28 ovex x+˙fyV
29 fneq1 z=x+˙fyzFnAx+˙fyFnA
30 28 29 elab x+˙fyz|zFnAx+˙fyFnA
31 20 27 30 3imtr4g φxz|zFnAyz|zFnAx+˙fyz|zFnA
32 31 imp φxz|zFnAyz|zFnAx+˙fyz|zFnA
33 2 14 32 seqcl φseqMf+˙FNz|zFnA
34 fvex seqMf+˙FNV
35 fneq1 z=seqMf+˙FNzFnAseqMf+˙FNFnA
36 34 35 elab seqMf+˙FNz|zFnAseqMf+˙FNFnA
37 33 36 sylib φseqMf+˙FNFnA
38 dffn5 seqMf+˙FNFnAseqMf+˙FN=zAseqMf+˙FNz
39 37 38 sylib φseqMf+˙FN=zAseqMf+˙FNz
40 fveq1 w=seqMf+˙FNwz=seqMf+˙FNz
41 eqid wVwz=wVwz
42 fvex seqMf+˙FNzV
43 40 41 42 fvmpt seqMf+˙FNVwVwzseqMf+˙FN=seqMf+˙FNz
44 34 43 mp1i φzAwVwzseqMf+˙FN=seqMf+˙FNz
45 32 adantlr φzAxz|zFnAyz|zFnAx+˙fyz|zFnA
46 14 adantlr φzAxMNFxz|zFnA
47 2 adantr φzANM
48 eqidd φxFnAyFnAzAxz=xz
49 eqidd φxFnAyFnAzAyz=yz
50 15 16 17 17 18 48 49 ofval φxFnAyFnAzAx+˙fyz=xz+˙yz
51 50 an32s φzAxFnAyFnAx+˙fyz=xz+˙yz
52 fveq1 w=x+˙fywz=x+˙fyz
53 fvex x+˙fyzV
54 52 41 53 fvmpt x+˙fyVwVwzx+˙fy=x+˙fyz
55 28 54 ax-mp wVwzx+˙fy=x+˙fyz
56 fveq1 w=xwz=xz
57 fvex xzV
58 56 41 57 fvmpt xVwVwzx=xz
59 58 elv wVwzx=xz
60 fveq1 w=ywz=yz
61 fvex yzV
62 60 41 61 fvmpt yVwVwzy=yz
63 62 elv wVwzy=yz
64 59 63 oveq12i wVwzx+˙wVwzy=xz+˙yz
65 51 55 64 3eqtr4g φzAxFnAyFnAwVwzx+˙fy=wVwzx+˙wVwzy
66 27 65 sylan2b φzAxz|zFnAyz|zFnAwVwzx+˙fy=wVwzx+˙wVwzy
67 fveq1 w=Fxwz=Fxz
68 fvex FxzV
69 67 41 68 fvmpt FxVwVwzFx=Fxz
70 11 69 ax-mp wVwzFx=Fxz
71 3 adantlr φzAxMNFx=zAGx
72 71 fveq1d φzAxMNFxz=zAGxz
73 simplr φzAxMNzA
74 6 fvmpt2 zAGxVzAGxz=Gx
75 73 4 74 sylancl φzAxMNzAGxz=Gx
76 72 75 eqtrd φzAxMNFxz=Gx
77 70 76 eqtrid φzAxMNwVwzFx=Gx
78 45 46 47 66 77 seqhomo φzAwVwzseqMf+˙FN=seqM+˙GN
79 44 78 eqtr3d φzAseqMf+˙FNz=seqM+˙GN
80 79 mpteq2dva φzAseqMf+˙FNz=zAseqM+˙GN
81 39 80 eqtrd φseqMf+˙FN=zAseqM+˙GN