Metamath Proof Explorer


Theorem sge00

Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion sge00 sum^=0

Proof

Step Hyp Ref Expression
1 0ex V
2 1 a1i V
3 f0 :0+∞
4 3 a1i :0+∞
5 noel ¬+∞
6 5 a1i ¬+∞
7 rn0 ran=
8 7 eqcomi =ran
9 8 a1i =ran
10 6 9 neleqtrd ¬+∞ran
11 4 10 fge0iccico :0+∞
12 2 11 sge0reval sum^=supranx𝒫Finyxy*<
13 12 mptru sum^=supranx𝒫Finyxy*<
14 vex zV
15 eqid x𝒫Finyxy=x𝒫Finyxy
16 15 elrnmpt zVzranx𝒫Finyxyx𝒫Finz=yxy
17 14 16 ax-mp zranx𝒫Finyxyx𝒫Finz=yxy
18 17 biimpi zranx𝒫Finyxyx𝒫Finz=yxy
19 nfcv _xz
20 nfmpt1 _xx𝒫Finyxy
21 20 nfrn _xranx𝒫Finyxy
22 19 21 nfel xzranx𝒫Finyxy
23 nfv xz=0
24 simpr x𝒫Finz=yxyz=yxy
25 elinel1 x𝒫Finx𝒫
26 pw0 𝒫=
27 26 eleq2i x𝒫x
28 27 biimpi x𝒫x
29 25 28 syl x𝒫Finx
30 elsni xx=
31 29 30 syl x𝒫Finx=
32 31 sumeq1d x𝒫Finyxy=yy
33 32 adantr x𝒫Finz=yxyyxy=yy
34 sum0 yy=0
35 34 a1i x𝒫Finz=yxyyy=0
36 24 33 35 3eqtrd x𝒫Finz=yxyz=0
37 36 ex x𝒫Finz=yxyz=0
38 37 a1i zranx𝒫Finyxyx𝒫Finz=yxyz=0
39 22 23 38 rexlimd zranx𝒫Finyxyx𝒫Finz=yxyz=0
40 18 39 mpd zranx𝒫Finyxyz=0
41 velsn z0z=0
42 41 bicomi z=0z0
43 42 biimpi z=0z0
44 40 43 syl zranx𝒫Finyxyz0
45 elsni z0z=0
46 0elpw 𝒫
47 0fin Fin
48 46 47 pm3.2i 𝒫Fin
49 elin 𝒫Fin𝒫Fin
50 48 49 mpbir 𝒫Fin
51 34 eqcomi 0=yy
52 sumeq1 x=yxy=yy
53 52 rspceeqv 𝒫Fin0=yyx𝒫Fin0=yxy
54 50 51 53 mp2an x𝒫Fin0=yxy
55 0re 0
56 15 elrnmpt 00ranx𝒫Finyxyx𝒫Fin0=yxy
57 55 56 ax-mp 0ranx𝒫Finyxyx𝒫Fin0=yxy
58 54 57 mpbir 0ranx𝒫Finyxy
59 58 a1i z00ranx𝒫Finyxy
60 45 59 eqeltrd z0zranx𝒫Finyxy
61 44 60 impbii zranx𝒫Finyxyz0
62 61 ax-gen zzranx𝒫Finyxyz0
63 dfcleq ranx𝒫Finyxy=0zzranx𝒫Finyxyz0
64 62 63 mpbir ranx𝒫Finyxy=0
65 64 supeq1i supranx𝒫Finyxy*<=sup0*<
66 xrltso <Or*
67 0xr 0*
68 supsn <Or*0*sup0*<=0
69 66 67 68 mp2an sup0*<=0
70 65 69 eqtri supranx𝒫Finyxy*<=0
71 13 70 eqtri sum^=0