| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|
| 2 |
1
|
a1i |
|
| 3 |
|
f0 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
noel |
|
| 6 |
5
|
a1i |
|
| 7 |
|
rn0 |
|
| 8 |
7
|
eqcomi |
|
| 9 |
8
|
a1i |
|
| 10 |
6 9
|
neleqtrd |
|
| 11 |
4 10
|
fge0iccico |
|
| 12 |
2 11
|
sge0reval |
|
| 13 |
12
|
mptru |
|
| 14 |
|
vex |
|
| 15 |
|
eqid |
|
| 16 |
15
|
elrnmpt |
|
| 17 |
14 16
|
ax-mp |
|
| 18 |
17
|
biimpi |
|
| 19 |
|
nfcv |
|
| 20 |
|
nfmpt1 |
|
| 21 |
20
|
nfrn |
|
| 22 |
19 21
|
nfel |
|
| 23 |
|
nfv |
|
| 24 |
|
simpr |
|
| 25 |
|
elinel1 |
|
| 26 |
|
pw0 |
|
| 27 |
26
|
eleq2i |
|
| 28 |
27
|
biimpi |
|
| 29 |
25 28
|
syl |
|
| 30 |
|
elsni |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
sumeq1d |
|
| 33 |
32
|
adantr |
|
| 34 |
|
sum0 |
|
| 35 |
34
|
a1i |
|
| 36 |
24 33 35
|
3eqtrd |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
a1i |
|
| 39 |
22 23 38
|
rexlimd |
|
| 40 |
18 39
|
mpd |
|
| 41 |
|
velsn |
|
| 42 |
41
|
bicomi |
|
| 43 |
42
|
biimpi |
|
| 44 |
40 43
|
syl |
|
| 45 |
|
elsni |
|
| 46 |
|
0elpw |
|
| 47 |
|
0fi |
|
| 48 |
46 47
|
pm3.2i |
|
| 49 |
|
elin |
|
| 50 |
48 49
|
mpbir |
|
| 51 |
34
|
eqcomi |
|
| 52 |
|
sumeq1 |
|
| 53 |
52
|
rspceeqv |
|
| 54 |
50 51 53
|
mp2an |
|
| 55 |
|
0re |
|
| 56 |
15
|
elrnmpt |
|
| 57 |
55 56
|
ax-mp |
|
| 58 |
54 57
|
mpbir |
|
| 59 |
58
|
a1i |
|
| 60 |
45 59
|
eqeltrd |
|
| 61 |
44 60
|
impbii |
|
| 62 |
61
|
ax-gen |
|
| 63 |
|
dfcleq |
|
| 64 |
62 63
|
mpbir |
|
| 65 |
64
|
supeq1i |
|
| 66 |
|
xrltso |
|
| 67 |
|
0xr |
|
| 68 |
|
supsn |
|
| 69 |
66 67 68
|
mp2an |
|
| 70 |
65 69
|
eqtri |
|
| 71 |
13 70
|
eqtri |
|