Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | sge00 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |
|
2 | 1 | a1i | |
3 | f0 | |
|
4 | 3 | a1i | |
5 | noel | |
|
6 | 5 | a1i | |
7 | rn0 | |
|
8 | 7 | eqcomi | |
9 | 8 | a1i | |
10 | 6 9 | neleqtrd | |
11 | 4 10 | fge0iccico | |
12 | 2 11 | sge0reval | |
13 | 12 | mptru | |
14 | vex | |
|
15 | eqid | |
|
16 | 15 | elrnmpt | |
17 | 14 16 | ax-mp | |
18 | 17 | biimpi | |
19 | nfcv | |
|
20 | nfmpt1 | |
|
21 | 20 | nfrn | |
22 | 19 21 | nfel | |
23 | nfv | |
|
24 | simpr | |
|
25 | elinel1 | |
|
26 | pw0 | |
|
27 | 26 | eleq2i | |
28 | 27 | biimpi | |
29 | 25 28 | syl | |
30 | elsni | |
|
31 | 29 30 | syl | |
32 | 31 | sumeq1d | |
33 | 32 | adantr | |
34 | sum0 | |
|
35 | 34 | a1i | |
36 | 24 33 35 | 3eqtrd | |
37 | 36 | ex | |
38 | 37 | a1i | |
39 | 22 23 38 | rexlimd | |
40 | 18 39 | mpd | |
41 | velsn | |
|
42 | 41 | bicomi | |
43 | 42 | biimpi | |
44 | 40 43 | syl | |
45 | elsni | |
|
46 | 0elpw | |
|
47 | 0fin | |
|
48 | 46 47 | pm3.2i | |
49 | elin | |
|
50 | 48 49 | mpbir | |
51 | 34 | eqcomi | |
52 | sumeq1 | |
|
53 | 52 | rspceeqv | |
54 | 50 51 53 | mp2an | |
55 | 0re | |
|
56 | 15 | elrnmpt | |
57 | 55 56 | ax-mp | |
58 | 54 57 | mpbir | |
59 | 58 | a1i | |
60 | 45 59 | eqeltrd | |
61 | 44 60 | impbii | |
62 | 61 | ax-gen | |
63 | dfcleq | |
|
64 | 62 63 | mpbir | |
65 | 64 | supeq1i | |
66 | xrltso | |
|
67 | 0xr | |
|
68 | supsn | |
|
69 | 66 67 68 | mp2an | |
70 | 65 69 | eqtri | |
71 | 13 70 | eqtri | |