Description: If the sum of nonnegative extended reals is +oo , then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0pnffigt.x | |
|
sge0pnffigt.f | |
||
sge0pnffigt.pnf | |
||
sge0pnffigt.y | |
||
Assertion | sge0pnffigt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0pnffigt.x | |
|
2 | sge0pnffigt.f | |
|
3 | sge0pnffigt.pnf | |
|
4 | sge0pnffigt.y | |
|
5 | 1 2 | sge0sup | |
6 | 5 3 | eqtr3d | |
7 | vex | |
|
8 | 7 | a1i | |
9 | 2 | adantr | |
10 | elpwinss | |
|
11 | 10 | adantl | |
12 | 9 11 | fssresd | |
13 | 8 12 | sge0xrcl | |
14 | 13 | ralrimiva | |
15 | eqid | |
|
16 | 15 | rnmptss | |
17 | 14 16 | syl | |
18 | supxrunb2 | |
|
19 | 17 18 | syl | |
20 | 6 19 | mpbird | |
21 | breq1 | |
|
22 | 21 | rexbidv | |
23 | 22 | rspcva | |
24 | 4 20 23 | syl2anc | |
25 | vex | |
|
26 | 15 | elrnmpt | |
27 | 25 26 | ax-mp | |
28 | 27 | biimpi | |
29 | 28 | 3ad2ant2 | |
30 | nfv | |
|
31 | nfcv | |
|
32 | nfmpt1 | |
|
33 | 32 | nfrn | |
34 | 31 33 | nfel | |
35 | nfv | |
|
36 | 30 34 35 | nf3an | |
37 | simpl | |
|
38 | simpr | |
|
39 | 38 | breq2d | |
40 | 37 39 | mpbid | |
41 | 40 | ex | |
42 | 41 | adantl | |
43 | 42 | a1d | |
44 | 43 | 3adant2 | |
45 | 36 44 | reximdai | |
46 | 29 45 | mpd | |
47 | 46 | 3exp | |
48 | 47 | rexlimdv | |
49 | 24 48 | mpd | |