Metamath Proof Explorer


Theorem sge0pnffigt

Description: If the sum of nonnegative extended reals is +oo , then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pnffigt.x φXV
sge0pnffigt.f φF:X0+∞
sge0pnffigt.pnf φsum^F=+∞
sge0pnffigt.y φY
Assertion sge0pnffigt φx𝒫XFinY<sum^Fx

Proof

Step Hyp Ref Expression
1 sge0pnffigt.x φXV
2 sge0pnffigt.f φF:X0+∞
3 sge0pnffigt.pnf φsum^F=+∞
4 sge0pnffigt.y φY
5 1 2 sge0sup φsum^F=supranx𝒫XFinsum^Fx*<
6 5 3 eqtr3d φsupranx𝒫XFinsum^Fx*<=+∞
7 vex xV
8 7 a1i φx𝒫XFinxV
9 2 adantr φx𝒫XFinF:X0+∞
10 elpwinss x𝒫XFinxX
11 10 adantl φx𝒫XFinxX
12 9 11 fssresd φx𝒫XFinFx:x0+∞
13 8 12 sge0xrcl φx𝒫XFinsum^Fx*
14 13 ralrimiva φx𝒫XFinsum^Fx*
15 eqid x𝒫XFinsum^Fx=x𝒫XFinsum^Fx
16 15 rnmptss x𝒫XFinsum^Fx*ranx𝒫XFinsum^Fx*
17 14 16 syl φranx𝒫XFinsum^Fx*
18 supxrunb2 ranx𝒫XFinsum^Fx*yzranx𝒫XFinsum^Fxy<zsupranx𝒫XFinsum^Fx*<=+∞
19 17 18 syl φyzranx𝒫XFinsum^Fxy<zsupranx𝒫XFinsum^Fx*<=+∞
20 6 19 mpbird φyzranx𝒫XFinsum^Fxy<z
21 breq1 y=Yy<zY<z
22 21 rexbidv y=Yzranx𝒫XFinsum^Fxy<zzranx𝒫XFinsum^FxY<z
23 22 rspcva Yyzranx𝒫XFinsum^Fxy<zzranx𝒫XFinsum^FxY<z
24 4 20 23 syl2anc φzranx𝒫XFinsum^FxY<z
25 vex zV
26 15 elrnmpt zVzranx𝒫XFinsum^Fxx𝒫XFinz=sum^Fx
27 25 26 ax-mp zranx𝒫XFinsum^Fxx𝒫XFinz=sum^Fx
28 27 biimpi zranx𝒫XFinsum^Fxx𝒫XFinz=sum^Fx
29 28 3ad2ant2 φzranx𝒫XFinsum^FxY<zx𝒫XFinz=sum^Fx
30 nfv xφ
31 nfcv _xz
32 nfmpt1 _xx𝒫XFinsum^Fx
33 32 nfrn _xranx𝒫XFinsum^Fx
34 31 33 nfel xzranx𝒫XFinsum^Fx
35 nfv xY<z
36 30 34 35 nf3an xφzranx𝒫XFinsum^FxY<z
37 simpl Y<zz=sum^FxY<z
38 simpr Y<zz=sum^Fxz=sum^Fx
39 38 breq2d Y<zz=sum^FxY<zY<sum^Fx
40 37 39 mpbid Y<zz=sum^FxY<sum^Fx
41 40 ex Y<zz=sum^FxY<sum^Fx
42 41 adantl φY<zz=sum^FxY<sum^Fx
43 42 a1d φY<zx𝒫XFinz=sum^FxY<sum^Fx
44 43 3adant2 φzranx𝒫XFinsum^FxY<zx𝒫XFinz=sum^FxY<sum^Fx
45 36 44 reximdai φzranx𝒫XFinsum^FxY<zx𝒫XFinz=sum^Fxx𝒫XFinY<sum^Fx
46 29 45 mpd φzranx𝒫XFinsum^FxY<zx𝒫XFinY<sum^Fx
47 46 3exp φzranx𝒫XFinsum^FxY<zx𝒫XFinY<sum^Fx
48 47 rexlimdv φzranx𝒫XFinsum^FxY<zx𝒫XFinY<sum^Fx
49 24 48 mpd φx𝒫XFinY<sum^Fx