Metamath Proof Explorer


Theorem sigarcol

Description: Given three points A , B and C such that -. A = B , the point C lies on the line going through A and B iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017)

Ref Expression
Hypotheses sigarcol.sigar G=x,yxy
sigarcol.a φABC
sigarcol.b φ¬A=B
Assertion sigarcol φACGBC=0tC=B+tAB

Proof

Step Hyp Ref Expression
1 sigarcol.sigar G=x,yxy
2 sigarcol.a φABC
3 sigarcol.b φ¬A=B
4 2 simp2d φB
5 2 simp3d φC
6 2 simp1d φA
7 4 5 6 3jca φBCA
8 7 adantr φACGBC=0BCA
9 3 adantr φACGBC=0¬A=B
10 1 sigarperm ABCACGBC=BAGCA
11 2 10 syl φACGBC=BAGCA
12 1 sigarperm BCABAGCA=CBGAB
13 7 12 syl φBAGCA=CBGAB
14 11 13 eqtrd φACGBC=CBGAB
15 14 eqeq1d φACGBC=0CBGAB=0
16 15 biimpa φACGBC=0CBGAB=0
17 1 8 9 16 sigardiv φACGBC=0CBAB
18 5 4 subcld φCB
19 18 adantr φACGBC=0CB
20 6 4 subcld φAB
21 20 adantr φACGBC=0AB
22 6 adantr φACGBC=0A
23 4 adantr φACGBC=0B
24 9 neqned φACGBC=0AB
25 22 23 24 subne0d φACGBC=0AB0
26 19 21 25 divcan1d φACGBC=0CBABAB=CB
27 26 oveq2d φACGBC=0B+CBABAB=B+C-B
28 5 adantr φACGBC=0C
29 23 28 pncan3d φACGBC=0B+C-B=C
30 27 29 eqtr2d φACGBC=0C=B+CBABAB
31 oveq1 t=CBABtAB=CBABAB
32 31 oveq2d t=CBABB+tAB=B+CBABAB
33 32 rspceeqv CBABC=B+CBABABtC=B+tAB
34 17 30 33 syl2anc φACGBC=0tC=B+tAB
35 34 ex φACGBC=0tC=B+tAB
36 14 3ad2ant1 φtC=B+tABACGBC=CBGAB
37 4 3ad2ant1 φtC=B+tABB
38 simp2 φtC=B+tABt
39 38 recnd φtC=B+tABt
40 6 3ad2ant1 φtC=B+tABA
41 40 37 subcld φtC=B+tABAB
42 39 41 mulcld φtC=B+tABtAB
43 simp3 φtC=B+tABC=B+tAB
44 37 42 43 mvrladdd φtC=B+tABCB=tAB
45 44 oveq1d φtC=B+tABCBGAB=tABGAB
46 39 41 mulcomd φtC=B+tABtAB=ABt
47 46 oveq1d φtC=B+tABtABGAB=ABtGAB
48 45 47 eqtrd φtC=B+tABCBGAB=ABtGAB
49 41 39 mulcld φtC=B+tABABt
50 1 sigarac ABtABABtGAB=ABGABt
51 49 41 50 syl2anc φtC=B+tABABtGAB=ABGABt
52 1 sigarls ABABtABGABt=ABGABt
53 41 41 38 52 syl3anc φtC=B+tABABGABt=ABGABt
54 1 sigarid ABABGAB=0
55 41 54 syl φtC=B+tABABGAB=0
56 55 oveq1d φtC=B+tABABGABt=0t
57 39 mul02d φtC=B+tAB0t=0
58 53 56 57 3eqtrd φtC=B+tABABGABt=0
59 58 negeqd φtC=B+tABABGABt=0
60 neg0 0=0
61 60 a1i φtC=B+tAB0=0
62 51 59 61 3eqtrd φtC=B+tABABtGAB=0
63 36 48 62 3eqtrd φtC=B+tABACGBC=0
64 63 rexlimdv3a φtC=B+tABACGBC=0
65 35 64 impbid φACGBC=0tC=B+tAB