Description: Value of the simple function integral builder for a given space W and measure M . (Contributed by Thierry Arnoux, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sitgval.b | |
|
sitgval.j | |
||
sitgval.s | |
||
sitgval.0 | |
||
sitgval.x | |
||
sitgval.h | |
||
sitgval.1 | |
||
sitgval.2 | |
||
Assertion | sitgval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | |
|
2 | sitgval.j | |
|
3 | sitgval.s | |
|
4 | sitgval.0 | |
|
5 | sitgval.x | |
|
6 | sitgval.h | |
|
7 | sitgval.1 | |
|
8 | sitgval.2 | |
|
9 | 7 | elexd | |
10 | 2fveq3 | |
|
11 | 2 | fveq2i | |
12 | 3 11 | eqtri | |
13 | 10 12 | eqtr4di | |
14 | 13 | oveq2d | |
15 | fveq2 | |
|
16 | 15 4 | eqtr4di | |
17 | 16 | sneqd | |
18 | 17 | difeq2d | |
19 | 18 | raleqdv | |
20 | 19 | anbi2d | |
21 | 14 20 | rabeqbidv | |
22 | id | |
|
23 | 17 | difeq2d | |
24 | fveq2 | |
|
25 | 24 5 | eqtr4di | |
26 | 2fveq3 | |
|
27 | 26 6 | eqtr4di | |
28 | 27 | fveq1d | |
29 | eqidd | |
|
30 | 25 28 29 | oveq123d | |
31 | 23 30 | mpteq12dv | |
32 | 22 31 | oveq12d | |
33 | 21 32 | mpteq12dv | |
34 | dmeq | |
|
35 | 34 | oveq1d | |
36 | fveq1 | |
|
37 | 36 | eleq1d | |
38 | 37 | ralbidv | |
39 | 38 | anbi2d | |
40 | 35 39 | rabeqbidv | |
41 | simpl | |
|
42 | 41 | fveq1d | |
43 | 42 | fveq2d | |
44 | 43 | oveq1d | |
45 | 44 | mpteq2dva | |
46 | 45 | oveq2d | |
47 | 40 46 | mpteq12dv | |
48 | df-sitg | |
|
49 | ovex | |
|
50 | 49 | mptrabex | |
51 | 33 47 48 50 | ovmpo | |
52 | 9 8 51 | syl2anc | |